ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:89.50KB ,
资源ID:334257      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-334257-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020新高考数学(理)二轮专题培优新方案主攻40个必考点练习:统计与概率 考点过关检测二十 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2020新高考数学(理)二轮专题培优新方案主攻40个必考点练习:统计与概率 考点过关检测二十 WORD版含解析.doc

1、考点过关检测(二十)1(2019唐山摸底)甲、乙两位工人分别用两种不同工艺生产同一种零件,已知尺寸在223,228(单位:mm)内的零件为一等品,其余为二等品甲、乙两位工人当天生产零件尺寸的茎叶图如图所示:(1)从甲、乙两位工人当天所生产的零件中各随机抽取1个零件,求抽取的2个零件等级互不相同的概率;(2)从工人甲当天生产的零件中随机抽取3个零件,记这3个零件中一等品数量为X,求X的分布列和数学期望解:(1)由茎叶图可知,甲当天生产了10个零件,其中4个一等品,6个二等品;乙当天生产了10个零件,其中5个一等品,5个二等品所以抽取的2个零件等级互不相同的概率P.(2)由题意知,X可取0,1,2

2、,3.则P(X0),P(X1),P(X2),P(X3).所以X的分布列为X0123P所以随机变量X的数学期望E(X)0123.2(2019江西红色七校第一次联考)某市某中学的环保社团参照国家环境标准制定了该市空气质量指数与空气质量等级对应关系,如下表(假设该区域空气质量指数不会超过300).空气质量指数(0,50(50,100(100,150(150,200(200,250(250,300空气质量等级1级优2级良3级轻度污染4级中度污染5级重度污染6级严重污染该社团将该市在2019年100天的空气质量指数监测数据作为样本,绘制的频率分布直方图如图所示,把该直方图所得频率估计为概率(1)请估算2

3、019年(以365天计算)全年该市空气质量优良的天数(未满一天按一天计算);(2)该市于2019年12月25,26,27日举办一场国际会议,若这三天中某天出现5级重度污染,则该天需要净化空气费用10万元,出现6级严重污染,则该天需要净化空气费用20万元,假设每天的空气质量等级相互独立,记这三天净化空气总费用为X万元,求X的分布列及数学期望解:(1)由直方图可得2019年(以365天计算)全年该市空气质量优良的天数为(0.0020.004)503650.3365109.5110.(2)易知出现5级重度污染与6级严重污染的概率均为,出现其他空气质量指数的概率为,由题意可知,X的所有可能取值为0,1

4、0,20,30,40,50,60,则P(X0)3,P(X10)C2,P(X20)C2C2,P(X30)3CC,P(X40)C2C2,P(X50)C2,P(X60)3.所以X的分布列为X0102030405060PE(X)01020304050609(万元)3(2019合肥模拟)为了预防某种流感扩散,某校医务室采取积极的处理方式,对感染者进行短暂隔离直到康复假设某班级已知6位同学中有1位同学被感染,需要通过化验血液来确定被感染的同学,血液化验结果呈阳性即被感染,呈阴性即未被感染下面是两种化验方案方案甲:逐个化验,直到能确定被感染的同学为止方案乙:先任取3个同学,将他们的血液混在一起化验,若结果呈

5、阳性则表明被感染同学为这3位中的1位,后再逐个化验,直到能确定被感染的同学为止;若结果呈阴性,则在另外3位同学中逐个检测(1)求方案甲所需化验次数等于方案乙所需化验次数的概率;(2)表示方案甲所需化验次数,表示方案乙所需化验次数,假设每次化验的费用都相同,请从经济角度考虑哪种化验的方案最佳解:设Ai(i1,2,3,4,5)表示方案甲所需化验次数为i次;Bj(j2,3)表示方案乙所需化验的次数为j次,方案甲与方案乙相互独立(1)P(A1)P(A2)P(A3)P(A4),P(A5),P(B2),P(B3)1P(B2),用事件D表示方案甲所需化验次数等于方案乙所需化验次数,则P(D)P(A2B2A3

6、B3)P(A2)P(B2)P(A3)P(B3).(2)的可能取值为1,2,3,4,5.的可能取值为2,3.由(1)知P(1)P(2)P(3)P(4),P(5),所以E()12345,P(2)P(B2),P(3)P(B3),所以E()23.因为E()E(),所以从经济角度考虑方案乙最佳4(2019长春实验高中二模)某公司为了扩大生产规模,欲在泉州、福州、广州、海口、北海(广西)、河内、吉隆坡、雅加达、科伦坡、加尔各答、内罗毕、雅典和威尼斯共13个城市中选择3个城市建设自己的工业厂房,根据这13个城市的需求量生产某产品,并将其销往这13个城市(1)求所选的3个城市中至少有1个在国内的概率(2)已知

7、每间工业厂房的月产量为10万件,若一间厂房正常生产,则每月可获得利润100万;若一间厂房闲置,则该厂房每月亏损50万该公司为了确定建设工业厂房的数目n(10n13,nN*),统计了近5年来这13个城市中该产品的月需求量数据,得如下频数分布表:月需求量(单位:万件)100110120130月份数6241812若以每月需求量的频率代替每月需求量的概率,欲使该产品的每月总利润的数学期望达到最大,应建设工业厂房多少间?解:(1)记事件A为“该公司所选的3个城市中至少有1个在国内”,则P(A)1P()1,所选的3个城市中至少有1个在国内的概率为.(2)设该产品每月的总利润为Y,当n10时,产品可完全售出

8、,故Y100101 000万元当n11时,月需求量为100万件时,获利Y1001050950万元,月需求量为110万件及以上时,获利Y100111 100万元P(Y950)0.1,P(Y1 100)1P(Y950)10.10.9.Y的分布列为Y9501 100P0.10.9E(Y)9500.11 1000.91 085万元当n12时,月需求量为100万件时,获利Y10010502900万元,月需求量为110万件时,获利Y10011501 050万元,月需求量为120万件及以上时,获利Y100121 200万元P(Y900)0.1,P(Y1 050)0.4,P(Y1 200)0.5.Y的分布列为

9、Y9001 0501 200P0.10.40.5E(Y)9000.11 0500.41 2000.51 110万元当n13时,月需求量为100万件时,获利Y10010503850万元,月需求量为110万件时,获利Y100115021 000万元,月需求量为120万件时,获利Y10012501 150万元,月需求量为130万件时,获利Y100131 300万元P(Y850)0.1,P(Y1 000)0.4,P(Y1 150)0.3,P(Y1 300)0.2.Y的分布列为Y8501 0001 1501 300P0.10.40.30.2E(Y)8500.11 0000.41 1500.31 3000.21 090万元综上,当n12时,E(Y)1 110万元最大,欲使该产品的每月总利润的数学期望达到最大,应建设工业厂房12间

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3