ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:417KB ,
资源ID:333160      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-333160-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(九江市实验中学数学北师大版选修2-3教案 第三章 第三章《第一课时 回归分析》教案 WORD版含答案.doc)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

九江市实验中学数学北师大版选修2-3教案 第三章 第三章《第一课时 回归分析》教案 WORD版含答案.doc

1、 共同分享智慧的结晶 共同创造丰硕的成果一、教学目标:(1)通过实例引入线性回归模型,感受产生随机误差的原因;(2)通过对回归模型的合理性等问题的研究,渗透线性回归分析的思想和方法;(3)能求出简单实际问题的线性回归方程。二、教学重点,难点:线性回归模型的建立和线性回归系数的最佳估计值的探求方法。三、教学方法:讨论交流,探析归纳四、教学过程(一)、问题情境1、情境:对一作直线运动的质点的运动过程观测了次,得到如下表所示的数据,试估计当x=时的位置y的值时刻/s位置观测值/cm根据数学(必修)中的有关内容,解决这个问题的方法是:先作散点图,如下图所示:从散点图中可以看出,样本点呈直线趋势,时间与

2、位置观测值y之间有着较好的线性关系因此可以用线性回归方程来刻画它们之间的关系根据线性回归的系数公式,可以得到线性回归方为,所以当时,由线性回归方程可以估计其位置值为2、问题:在时刻时,质点的运动位置一定是吗?(二)、学生活动思考,讨论:这些点并不都在同一条直线上,上述直线并不能精确地反映与之间的关系,的值不能由完全确定,它们之间是统计相关关系,的实际值与估计值之间存在着误差。(三)、新课探析1、线性回归模型的定义:我们将用于估计值的线性函数作为确定性函数;的实际值与估计值之间的误差记为,称之为随机误差;将称为线性回归模型说明:(1)产生随机误差的主要原因有:所用的确定性函数不恰当引起的误差;忽

3、略了某些因素的影响;存在观测误差 (2)对于线性回归模型,我们应该考虑下面两个问题: 模型是否合理(这个问题在下一节课解决); 在模型合理的情况下,如何估计,?2、探求线性回归系数的最佳估计值:对于问题,设有对观测数据,根据线性回归模型,对于每一个,对应的随机误差项,我们希望总误差越小越好,即要使越小越好所以,只要求出使取得最小值时的,值作为,的估计值,记为,注:这里的就是拟合直线上的点到点的距离用什么方法求,?回忆数学3(必修)“24线性回归方程”P71“热茶问题”中求,的方法:最小二乘法利用最小二乘法可以得到,的计算公式为,其中,由此得到的直线就称为这对数据的回归直线,此直线方程即为线性回

4、归方程其中,分别为,的估计值,称为回归截距,称为回归系数,称为回归值在前面质点运动的线性回归方程中,3、线性回归方程中,的意义是:以为基数,每增加1个单位,相应地平均增加个单位。(四)、数学运用1、例题:例1、下表给出了我国从年至年人口数据资料,试根据表中数据估计我国年的人口数年份人口数/百万解:为了简化数据,先将年份减去,并将所得值用表示,对应人口数用表示,得到下面的数据表:作出个点构成的散点图,由图可知,这些点在一条直线附近,可以用线性回归模型来表示它们之间的关系根据公式(1)可得这里的分别为的估计值,因此线性回归方程为。由于年对应的,代入线性回归方程可得(百万),即年的人口总数估计为13

5、.23亿。例2、 从某大学中随机选取8 名女大学生,其身高和体重数据如表 编号12345678身高/cm165165157170175165155170体重/kg4857505464614359求根据女大学生的身高预报体重的回归方程,并预报一名身高为 172 cm 的女大学生的体重解:由于问题中要求根据身高预报体重,因此选取身高为自变量 x ,体重为因变量 y .作散点图从图中可以看出,样本点呈条状分布,身高和体重有比较好的线性相关关系,因此可以用线性回归方程来近似刻画它们之间的关系根据探究中的公式(1)和(2 ) ,可以得到. 于是得到回归方程.因此,对于身高172 cm 的女大学生,由回归

6、方程可以预报其体重为 ( kg ) . 是斜率的估计值,说明身高 x 每增加1个单位时,体重y就增加0.849 位,这表明体重与身高具有正的线性相关关系。2、练习:课本P76页练习题(五)、课堂小结:1、线性回归模型与确定性函数相比,它表示与之间是统计相关关系(非确定性关系)其中的随机误差提供了选择模型的准则以及在模型合理的情况下探求最佳估计值,的工具;2、线性回归方程中,的意义是:以为基数,每增加1个单位,相应地平均增加个单位;3、求线性回归方程的基本步骤。(六)作业:课本P85页习题3-1中第1题联系地址:郑州市经五路66号河南电子音像出版社有限公司 邮编 450002 电话 400-688-1789第 6 页 共 6 页

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1