ImageVerifierCode 换一换
格式:DOC , 页数:13 ,大小:3.30MB ,
资源ID:332016      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-332016-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2013年高考数学必备经典例题分析(知识梳理 典例练习)八 圆锥曲线WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2013年高考数学必备经典例题分析(知识梳理 典例练习)八 圆锥曲线WORD版含答案.doc

1、椭圆知识关系网椭圆1.椭圆的定义:第一定义:平面内到两个定点F1、F2的距离之和等于定值2a(2a|F1F2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距.第二定义: 平面内到定点F与到定直线l的距离之比是常数e(0e1)的点的轨迹是椭圆,定点叫做椭圆的焦点,定直线叫做椭圆的准线,常数叫做椭圆的离心率.2.椭圆的标准方程及其几何性质(如下表所示)标准方程图形顶点,对称轴轴,轴,长轴长为,短轴长为焦点、焦距焦距为 离心率 (0eb0)的两个焦点,P是以F1F2为直径的圆与椭圆的一个交点,若PF1F2=5PF2F1,则椭圆的离心率为( )(A) (B) (C) (D)

2、例6. 设A(2, ),椭圆3x24y2=48的右焦点是F,点P在椭圆上移动,当|AP|2|PF|取最小值时P点的坐标是( )。(A)(0, 2) (B)(0, 2) (C)(2, ) (D)(2, )椭圆例7. P点在椭圆上,F1、F2是两个焦点,若,则P点的坐标是 .例8.写出满足下列条件的椭圆的标准方程:(1)长轴与短轴的和为18,焦距为6; .(2)焦点坐标为,并且经过点(2,1); .(3)椭圆的两个顶点坐标分别为,且短轴是长轴的; _.(4)离心率为,经过点(2,0); .例9. 是椭圆的左、右焦点,点在椭圆上运动,则的最大值是 例10. 椭圆中心是坐标原点O,焦点在x轴上,e=,

3、过椭圆左焦点F的直线交椭圆于P、Q两点,|PQ|=,且OPOQ,求此椭圆的方程.双曲线知识关系网双曲线1.双曲线的定义:第一定义:平面内到两个定点F1、F2的距离之差的绝对值等于定值2a(02a1)的点的轨迹是双曲线,定点叫做双曲线的焦点,定直线叫做双曲线的准线,常数叫做双曲线的离心率.标准方程图形顶点对称轴轴,轴,实轴长为,虚轴长为焦点焦距焦距为 离心率 (e1)准线方程点P(x0,y0)的焦半径公式如需要用到焦半径就自己推导一下:如设是双曲线上一点, (c,o)为右焦点,点到相应准线的距离为, 则.当在右支上时, ;当在左支上时, 即, 类似可推导2.双曲线的标准方程及其几何性质(如下表所

4、示)双曲线例11.命题甲:动点P到两定点A、B的距离之差的绝对值等于2a(a0);命题乙: 点P的轨迹是双曲线。则命题甲是命题乙的( )(A) 充要条件 (B) 必要不充分条件 (C) 充分不必要条件 (D) 不充分也不必要条件例12.到定点的距离与到定直线的距离之比等于log23的点的轨迹是( )(A)圆 (B)椭圆(C)双曲线(D)抛物线双曲线例13. 过点(2,-2)且与双曲线有相同渐近线的双曲线的方程是( )(A) (B) (C) (D)例14. 如果双曲线的焦距为6,两条准线间的距离为4,那么双曲线的离心率为( )(A) (B) (C) (D)2例15. 如果双曲线上一点到它的左焦点

5、的距离是8,那么点到它的右准线的距离是()(A) (B) (C) (D)例16. 双曲线的两焦点为在双曲线上,且满足,则的面积为( ) 例17. 设的顶点,且,则第三个顶点C的轨迹方程是_.例18. 连结双曲线与(a0,b0)的四个顶点的四边形面积为,连结四个焦点的四边形的面积为,则的最大值是_例19.根据下列条件,求双曲线方程:与双曲线有共同渐近线,且过点(-3,);与双曲线有公共焦点,且过点(,2).例20. 设双曲线上两点A、B,AB中点M(1,2)求直线AB方程;如果线段AB的垂直平分线与双曲线交于C、D两点,那么A、B、C、D是否共圆,为什么?抛物线知识关系网抛物线1.抛物线的定义:

6、 平面内到定点F和定直线l的距离相等的点的轨迹叫做抛物线(点F不在上).定点F叫做抛物线的焦点, 定直线叫做抛物线的准线.2.抛物线的标准方程及其几何性质(如下表所示)标准方程图形对称轴轴轴轴轴焦点顶点原点准线离心率1点P(x0,y0)的焦半径公式用到焦半径自己推导一下即可如:开口向右的抛物线上的点P(x0,y0)的焦半径等于x0+.注: 1.通径为2p,这是抛物线的过焦点的所有弦中最短的弦. 2. (或)的参数方程为(或)(为参数).抛物线例21. 顶点在原点,焦点是的抛物线方程是( )(A)x2=8y (B)x2= -8y (C)y2=8x (D)y2= -8x例22. 抛物线上的一点到焦

7、点的距离为1,则点的纵坐标是( )(A) (B) (C) (D)0例23.过点P(0,1)与抛物线y2=x有且只有一个交点的直线有( )(A)4条 (B)3条 (C)2条 (D)1条例24. 过抛物线(a0)的焦点F作一直线交抛物线于P、Q两点,若线段PF与FQ的长分别为p、q,则等于( )(A)2a (B) (C) (D)例25. 若点A的坐标为(3,2),F为抛物线y2=2x的焦点,点P在抛物线上移动,为使|PA|+|PF|取最小值,P点的坐标为( )(A)(3,3) (B)(2,2) (C)(,1) (D)(0,0)例26. 动圆M过点F(0,2)且与直线y=-2相切,则圆心M的轨迹方程

8、是 .例27. 过抛物线y22px的焦点的一条直线和抛物线交于两点,设这两点的纵坐标为y1、y2,则y1y2_.例28. 以抛物线的焦点为圆心,通径长为半径的圆的方程是_.例29. 过点(-1,0)的直线l与抛物线y2=6x有公共点,则直线l的倾斜角的范围是 .例30设是一常数,过点的直线与抛物线交于相异两点A、B,以线段AB为直经作圆H(H为圆心)。()试证:抛物线顶点在圆H的圆周上;()求圆H的面积最小时直线AB的方程.轨迹问题上一章已经复习过解析几何的基本问题之一:如何求曲线(点的轨迹)方程,它一般分为两类基本题型:一是已知轨迹类型求其方程,常用待定系数法,如求直线及圆的方程就是典型例题

9、;二是未知轨迹类型,此时除了用代入法、交轨法、参数法等求轨迹的方法外,通常设法利用已知轨迹的定义解题,化归为求已知轨迹类型的轨迹方程。因此在求动点轨迹方程的过程中,一是寻找与动点坐标有关的方程(等量关系),侧重于数的运算,一是寻找与动点有关的几何条件,侧重于形,重视图形几何性质的运用。求轨迹方程的一般步骤:建、设、现(限)、代、化.轨迹方程例31. 已知两点M(2,0),N(2,0),点P满足=12,则点P的轨迹方程为( ) 例32.O1与O2的半径分别为1和2,|O1O2|=4,动圆与O1内切而与O2外切,则动圆圆心轨迹是( )(A)椭圆(B)抛物线(C)双曲线 (D)双曲线的一支例33.

10、动点P在抛物线y2=-6x上运动,定点A(0,1),线段PA中点的轨迹方程是( )(A)(2y+1)2=-12x(B)(2y+1)2=12x (C)(2y-1)2=-12x(D)(2y-1)2=12x例34. 过点(2,0)与圆相内切的圆的圆心的轨迹是()(A)椭圆(B)双曲线(C)抛物线(D)圆例35. 已知的周长是16,B则动点的轨迹方程是( )(A)(B) (C) (D)例36. 椭圆中斜率为的平行弦中点的轨迹方程为 .例37. 已知动圆P与定圆C: (x2)y相外切,又与定直线l:x相切,那么动圆的圆心P的轨迹方程是_.例38. 在直角坐标系中,则点的轨迹方程是_.圆锥曲线综合问题直线

11、与圆锥曲线的位置关系直线与圆锥曲线的位置关系和判定直线与圆锥曲线的位置关系有三种情况:相交、相切、相离.直线方程是二元一次方程,圆锥曲线方程是二元二次方程,由它们组成的方程组,经过消元得到一个一元二次方程,直线和圆锥曲线相交、相切、相离的充分必要条件分别是、.直线与圆锥曲线相交所得的弦长直线具有斜率,直线与圆锥曲线的两个交点坐标分别为,则它的弦长注:实质上是由两点间距离公式推导出来的,只是用了交点坐标设而不求的技巧而已(因为,运用韦达定理来进行计算.当直线斜率不存在是,则.注: 1.圆锥曲线,一要重视定义,这是学好圆锥曲线最重要的思想方法,二要数形结合,既熟练掌握方程组理论,又关注图形的几何性

12、质,以简化运算。2.当涉及到弦的中点时,通常有两种处理方法:一是韦达定理;二是点差法.3.圆锥曲线中参数取值范围问题通常从两个途径思考:一是建立函数,用求值域的方法求范围;二是建立不等式,通过解不等式求范围。圆锥曲线综合问题例39. AB为过椭圆=1中心的弦,F(c,0)为椭圆的右焦点,则AFB的面积最大值是( )(A)b2 (B)ab(C)ac (D)bc例40. 若直线ykx2与双曲线的右支交于不同的两点,则k的取值范围是(), , ,例41.若双曲线x2y2=1右支上一点P(a, b)到直线y=x的距离为,则ab的值是( ). 或 (D)2或2圆锥曲线综合问题例42.抛物线y=x2上的点

13、到直线2x- y =4的距离最近的点的坐标是( ) (B)(1,1) (C) () (D) (2,4)例43. 抛物线y2=4x截直线所得弦长为3,则k的值是( )(A)2 (B)-2 (C)4 (D)-4例44. 把曲线按向量平移后得曲线,曲线有一条准线方程为,则的值为( ) 例45.如果直线与双曲线没有交点,则的取值范围是 .例46. 已知抛物线上两点关于直线对称,且,那么m的值为 .例47. 以双曲线y2=1左焦点F,左准线l为相应焦点、准线的椭圆截直线y=kx+3所得弦恰被x轴平分,则k的取值范围是_.例48. 双曲线3x2-y2=1上是否存在关于直线y=2x对称的两点A、B?若存在,

14、试求出A、B两点的坐标;若不存在,说明理由.答案例1. D 例2. B 例3. C 先考虑M+m=2a,然后用验证法.例4. B提示:e=,P点到左准线的距离为2.5,它到左焦点的距离是2, 2a=10, P点到右焦点的距离是8,P点到右焦点的距离与到左焦点的距离之比是4 : 1;例5. B,.例6. C提示:椭圆3x24y2=48中,a=4, c=2, e=, 设椭圆上的P点到右准线的距离为d,则=, |AP|2|PF|=|AP|d, 当AP平行于x轴且P点在A点与右准线之间时,|AP|d为一直线段,距离最小,此时P点纵坐标等于,P点坐标是(2, )例7. (3,4) 或(-3, 4)例8.

15、 (1)或; (2) ;(3)或; (4) 或.例9. 例10. 解:设椭圆方程为+=1,(ab0)PQx轴时,F(-c,0),|FP|=,又|FQ|=|FP|且OPOQ,|OF|=|FP|,即c=ac=a2-c2,e2+e-1=0,e=与题设e=不符,所以PQ不垂直x轴.PQy=k(x+c),P(x1,y1),Q(x2,y2),e=,a2=c2,b2=c2,所以椭圆方程可化为:3x2+12y2-4c2=0,将PQ方程代入,得(3+12k2)x2+24k2cx+12k2c2-4c2=0,x1+x2=,x1x2=由|PQ|=得=OPOQ,= -1即x1x2+y1y2=0,(1+k2)x1x2+k

16、2c(x1+x2)+c2k2=0把,代入,解得k2=,把代入解得c2=3a2=4,b2=1,则所求椭圆方程为+y2=1.例11. B 例12. C 例13. D 例14. C 例15. C例16. A假设,由双曲线定义且,解得而由勾股定理得点评考查双曲线定义和方程思想.例17. 例18. 例19.设双曲线方程为(0), , 双曲线方程为;设双曲线方程为 ,解之得k=4, 双曲线方程为评注:与双曲线共渐近线的双曲线方程为(0),当0时,焦点在x轴上;当0,b2-k0)。比较上述两种解法可知,引入适当的参数可以提高解题质量,特别是充分利用含参数方程的几何意义,可以更准确地理解解析几何的基本思想.例

17、20. 解题思路分析:法一:显然AB斜率存在设AB:y-2=k(x-1) 由得:(2-k2)x2-2k(2-k)x-k2+4k-6=0当0时,设A(x1,y1),B(x2,y2) 则 k=1,满足0 直线AB:y=x+1 法二:设A(x1,y1),B(x2,y2)则两式相减得:(x1-x2)(x1+x2)=(y1-y2)(y1+y2) x1x2 AB:y=x+1代入得:0评注:法一为韦达定理法,法二称为点差法,当涉及到弦的中点时,常用这两种途径处理。在利用点差法时,必须检验条件0是否成立。(2)此类探索性命题通常肯定满足条件的结论存在,然后求出该结论,并检验是否满足所有条件.本题应着重分析圆的

18、几何性质,以定圆心和定半径这两定为中心设A、B、C、D共圆于OM,因AB为弦,故M在AB垂直平分线即CD上;又CD为弦,故圆心M为CD中点。因此只需证CD中点M满足|MA|=|MB|=|MC|=|MD|由得:A(-1,0),B(3,4)又CD方程:y=-x+3由得:x2+6x-11=0设C(x3,y3),D(x4,y4),CD中点M(x0,y0)则 M(-3,6) |MC|=|MD|=|CD|=又|MA|=|MB|= |MA|=|MB|=|MC|=|MD| A、B、C、D在以CD中点,M(-3,6)为圆心,为半径的圆上评注:充分分析平面图形的几何性质可以使解题思路更清晰,在复习中必须引起足够重

19、视.例21. B() 例22. B例23. B(过P可作抛物线的切线两条,还有一条与x轴平行的直线也满足要求。)例24. C作为选择题可采用特殊值法,取过焦点,且垂直于对称轴的直线与抛物线相交所形成线段分别为p,q,则p=q=|FK|,例25. 解析:运用抛物线的准线性质.答案:B 例26. x2=8y 例27. p2例28. 例29.例30. 解:由题意,直线AB不能是水平线, 故可设直线方程为:.又设,则其坐标满足消去x得由此得因此,即.故O必在圆H的圆周上.又由题意圆心H()是AB的中点,故由前已证OH应是圆H的半径,且.从而当k=0时,圆H的半径最小,亦使圆H的面积最小.此时,直线AB

20、的方程为:x=2p.注:1.解决直线和圆锥曲线的位置关系问题,一般方法是联立方程组,消元得一元二次方程,必须讨论二次项系数和判别式,利用韦达定理寻找两根之和与两根之积之间的关系求解有时借助图形的几何性质更为简洁此题设直线方程为x=ky+2p;因为直线过x轴上是点Q(2p,0),通常可以这样设,可避免对直线的斜率是否存在讨论2凡涉及弦的中点及中点弦问题,利用平方差法;涉及垂直关系往往也是利用韦达定理,设而不求简化运算3在引入点参数(本题中以AB弦的两个端点的坐标作为主参数)时,应尽量减少参数的个数,以便减少运算量由OAOB得x1x2+y1y2=O这个关系对于解决此类问题十分有用4列出目标函数,|

21、OH|=P,运用函数思想解决解析几何中的最值问题是解决此类问题的基本思路,也可利用基本不等式a2+b22ab当且仅当a=b时“=”成立求解例31. B 例32. D 例33. C 例34. A例35. B例36. 9x+16y=0 (椭圆内部分 例37. y8x 例38. 例39. 解析:SAFB=2SAOF,当点A位于短轴顶点处面积最大.答案:D 例40. D41. B 42. B 数形结合估算出D例43. D例40. C由已知得曲线的准线为,焦点在轴上且,例45.k 例46. 例47. (0,)例48. 解:设AB:y=-x+m,代入双曲线方程得11x2+4mx-4(m2+1)=0,这里=(4m)2-411-4(m2+1)=16(2m2+11)0恒成立,设A(x1,y1),B(x2,y2),AB的中点为M(x0,y0),则x1+x2=-,x0=-,y0=-x0+m=,若A、B关于直线y=2x对称,则M必在直线y=2x上,=-得m=1,由双曲线的对称性知,直线y=-x与双曲线的交点的A、B必关于直线y=2x对称.存在A、B且求得A(,-),B(-,)高考资源网()来源:高考资源网版权所有:高考资源网(www.k s 5 )

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3