1、第1讲排列、组合与二项式定理考情解读(1)高考中对两个计数原理、排列、组合的考查以基本概念、基本方法(如“在”“不在”问题、相邻问题、相间问题)为主,主要涉及数字问题、样品问题、几何问题、涂色问题、选取问题等;对二项式定理的考查,主要是利用通项求展开式的特定项,利用二项式定理展开式的性质求有关系数问题主要考查分类与整合思想、转化与化归思想、补集思想和逻辑思维能力(2)排列、组合、两个计数原理往往通过实际问题进行综合考查,一般以填空题的形式出现,难度中等,还经常与概率问题相结合,出现在解答题的第一或第二个小题中,难度也为中等;对于二项式定理的考查,主要出现在填空题中,难度为易或中等1分类计数原理
2、和分步计数原理如果每种方法都能将规定的事件完成,则要用分类计数原理将方法种数相加;如果需要通过若干步才能将规定的事件完成,则要用分步计数原理将各步的方法种数相乘2排列与组合(1)排列:从n个不同元素中取出m(mn)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列从n个不同元素中取出m个元素的排列数公式是An(n1)(n2)(nm1)或写成A.(2)组合:从n个不同元素中取出m(mn)个元素组成一组,叫做从n个不同元素中取出m个元素的一个组合从n个不同元素中取出m个元素的组合数公式是C或写成C.(3)组合数的性质CC;CCC.3二项式定理(1)二项式定理:(ab)nCa
3、nb0Can1bCan2b2CanrbrCa0bn(r0,1,2,n)(2)二项展开式的通项Tr1Canrbr,r0,1,2,n,其中C叫做二项式系数(3)二项式系数的性质对称性:与首末两端“等距离”两项的二项式系数相等,即CC,CC,CC,.最大值:当n为偶数时,中间的一项的二项式系数C取得最大值;当n为奇数时,中间的两项的二项式系数C,C相等,且同时取得最大值各二项式系数的和aCCCCC2n;bCCCCCC2n2n1.热点一两个计数原理例1(1)将1,2,3,9这9个数字填在如图的9个空格中,要求每一行从左到右,每一列从上到下分别依次增大当3,4固定在图中的位置时,填写空格的方法有_种(2)如果一个三位正整数“a1a2a3”满足a1a2且a30)的展开式中常数项为240,则(xa)(x2a)2的展开式中x2项的系数为_答案6解析(x)6的二项展开式的通项为Tr1Cx6r()rCarx6,令60,得r4,则其常数项为Ca415a4240,则a416,由a0,故a2.又(xa)(x2a)2的展开式中,x2项为3ax2.故x2项的系数为(3)26.