收藏 分享(赏)

2018高考数学(文科)异构异模复习考案撬分法习题 第十三章 推理与证明 13-1 WORD版含答案.DOC

上传人:高**** 文档编号:329701 上传时间:2024-05-27 格式:DOC 页数:4 大小:86.50KB
下载 相关 举报
2018高考数学(文科)异构异模复习考案撬分法习题 第十三章 推理与证明 13-1 WORD版含答案.DOC_第1页
第1页 / 共4页
2018高考数学(文科)异构异模复习考案撬分法习题 第十三章 推理与证明 13-1 WORD版含答案.DOC_第2页
第2页 / 共4页
2018高考数学(文科)异构异模复习考案撬分法习题 第十三章 推理与证明 13-1 WORD版含答案.DOC_第3页
第3页 / 共4页
2018高考数学(文科)异构异模复习考案撬分法习题 第十三章 推理与证明 13-1 WORD版含答案.DOC_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、1对二次函数f(x)ax2bxc(a为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是()A1是f(x)的零点B1是f(x)的极值点C3是f(x)的极值D点(2,8)在曲线yf(x)上答案A解析由A知abc0;由B知f(x)2axb,2ab0;由C知f(x)2axb,令f(x)0可得x,则f3,则3;由D知4a2bc8.假设A选项错误,则,得,满足题意,故A结论错误同理易知当B或C或D选项错误时不符合题意,故选A.2学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“

2、学生甲比学生乙成绩好”如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有 ()A2人 B3人 C4人 D5人答案B解析用A,B,C分别表示优秀、及格和不及格显然,语文成绩得A的学生最多只有一人,语文成绩得B的也最多只有1人,得C的也最多只有1人,所以这组学生的成绩为(AC),(BB),(CA)满足条件,故学生最多为3人3. 观察下列各式:点击观看解答视频C40;CC41;CCC42;CCCC43;照此规律,当nN*时,CCCC_.答案4n1解析第一个等式,n1,而右边式子为40411;第二个等式,n2,而右边式子为41421;第三

3、个等式,n3,而右边式子为42431;第四个等式,n4,而右边式子为43441;归纳可知,第n个等式的右边为4n1.4一个二元码是由0和1组成的数字串x1x2xn(nN*),其中xk(k1,2,n)称为第k位码元二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0)已知某种二元码x1x2x7的码元满足如下校验方程组:其中运算定义为:000,011,101,110.现已知一个这种二元码在通信过程中仅在第k位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k等于_答案5解析因为x4x5x6x711010010110,所以二元码1101101的前

4、3位码元都是对的;因为x2x3x6x71001101110,所以二元码1101101的第6、7位码元也是对的;因为x1x3x5x710111110110,所以二元码1101101的第5位码元是错的,所以k5.5.甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,点击观看解答视频甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市由此可判断乙去过的城市为_答案A解析根据甲、乙、丙说的可列表得ABC甲乙丙6.观察分析下表中数据多面体面数(F)顶点数(V)棱数(E)三棱柱569五棱锥6610立方体6812猜想一般凸多面体中F,V,E所满足的等式是_答案FVE

5、2解析由表可知,三棱柱:5692;五棱锥:66102;立方体:68122.由上面的结论可判定:凸多面体中面数(F),顶点数(V),棱数(E)的关系为FVE2.7对于数对序列P:(a1,b1),(a2,b2),(an,bn),记T1(P)a1b1,Tk(P)bkmaxTk1(P),a1a2ak(2kn),其中maxTk1(P),a1a2ak表示Tk1(P)和a1a2ak两个数中最大的数(1)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;(2)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P:(c,d),

6、(a,b),试分别对ma和md两种情况比较T2(P)和T2(P)的大小;(3)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值(只需写出结论)解(1)T1(P)257,T2(P)1maxT1(P),241max7,68.(2)T2(P)maxabd,acd,T2(P)maxcdb,cab当ma时,T2(P)maxcdb,cabcdb.因为abdcbd,且acdcbd,所以T2(P)T2(P)当md时,T2(P)maxcdb,cabcab.因为abdcab,且acdcab,所以T2(P)T2(P)所以无论ma还是md,T2(P)T2(P)都成立(3)数对序列P:(4,6),(11,11),(16,11),(11,8),(5,2)的T5(P)值最小,T1(P)10,T2(P)26,T3(P)42,T4(P)50,T5(P)52.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3