ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:545.50KB ,
资源ID:328104      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-328104-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(江苏省赣马高级中学10-11学年高一数学导学案:函数的最值.doc)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

江苏省赣马高级中学10-11学年高一数学导学案:函数的最值.doc

1、高考资源网() 您身边的高考专家赣马高级中学2010级高一数学导学案16 函数的最值【学习导航】 知识网络 函数最值函数最值概念函数最值与图像函数最值求法学习要求 1了解函数的最大值与最小值概念;2理解函数的最大值和最小值的几何意义; 3能求一些常见函数的最值和值域【新课导学】 1函数最值的定义:一般地,设函数的定义域为 若存在定值,使得对于任意,有 恒成立,则称 为的最 值,记为 ;若存在定值,使得对于任意,有 恒成立,则称 为的最 值,记为 。2单调性与最值: 设函数的定义域为,若是增函数,则 , ;若是减函数,则 , 【互动探究】一根据函数图像写单调区间和最值:例1:如图为函数,的图象,

2、指出它的最大值、最小值及单调区间二求函数最值:例2:求下列函数的最小值:(1); (2),例3:已知函数的定义域是,acb.当时,是单调增函数;当时,是单调减函数,试证明在时取得最大值。三、含参数问题的最值: 例4: 求,的最小值【迁移应用】1. 函数在上的最小值 ()与的取值有关不存在2. 函数的最小值是,最大值是3. 求下列函数的最值:(1);(2)4.函数的最大值为 .答案1函数最值的定义: 一般地,设函数的定义域为 若存在定值,使得对于任意,有恒成立,则称为的最大值,记为;若存在定值,使得对于任意,有恒成立,则称为的最小值,记为;2单调性与最值: 设函数的定义域为,若是增函数,则 ,

3、;若是减函数,则 , 一根据函数图像写单调区间和最值:例1:如图为函数,的图象,指出它的最大值、最小值及单调区间【解】由图可以知道:当时,该函数取得最小值;当时,函数取得最大值为;函数的单调递增区间有个:和;该函数的单调递减区间有三个:、和二求函数最值:例2:求下列函数的最小值:(1); (2),【解】()当时,;()因为函数在上是单调减函数,所以当时函数取得最小值为追踪训练一1. 函数在上的最小值(A)与的取值有关不存在2. 函数的最小值是,最大值是3. 求下列函数的最值:(1);(2)析:因为函数的最值是值域中的最大值和最小值,所以求函数的最值的方法有时和求函数值域的方法是相仿的解:(1)

4、;所以当时,;当时,;(2)函数是一次函数,且故在区间上是增函数所以当时,;当时,;例: 求,的最小值【解】,其图象是开口向上,对称轴为的抛物线 若,则在上是增函数,;若,则;若,则在上是减函数,的最小值不存在点评: 含参数问题的最值,一般情况下,我们先将参数看成是已知数,但不能解了我们再进行讨论!思维点拔:一、利用单调性写函数的最值?我们可以利用函数的草图,如果函数在区间上是图像连续的,且在 是单调递增的,在上是单调递减的,则该函数在区间上的最大值一定是在处取得;同理,若函数在区间上是图像连续的,且在 是单调递减的,在上是单调递增的,则该函数在区间上的最小值一定是在处取得追踪训练函数的最大值是 ( D) 2. y=x2+的最小值为( C )A.0B.C.1D不存在.3. 函数在区间上的最大值为,则_4.函数的最大值为.5已知二次函数在上有最大值4,求实数的值 解:函数的对称轴为,当时,则当时函数取最大值,即即;当时,则当时函数取得最大值,即,即所以,或。 版权所有高考资源网

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1