ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:477.50KB ,
资源ID:327344      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-327344-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(江苏省苏州市第五中学高中数学苏教版学案 必修四:3.2 二倍角的三角函数.doc)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

江苏省苏州市第五中学高中数学苏教版学案 必修四:3.2 二倍角的三角函数.doc

1、高考资源网() 您身边的高考专家3.2 二倍角的三角函数一、 学习内容、要求及建议知识、方法要求建议二倍角的正弦化归思想理解推导二倍角公式的关键在于认识“二倍角”是“和角”的特例,建议独立地推导公式,体会化归思想二倍角的余弦变形、升降幂公式二倍角的正切化归思想二、预习指导1. 预习目标(1)推导二倍角公式的思想和方法;(2)二倍角公式以及余弦的二倍角公式的变形(升、降幂公式)的记忆和应用;(3)和差角公式、二倍角公式综合应用.2. 预习提纲(1)阅读课本P105思考如何推导二倍角正弦、余弦、正切公式,并探究三倍角正弦、余弦、正切公式,并填空: ; ; (所有有意义)注意“倍角”的相对性.(2)

2、阅读课本P107的降幂公式并学会运用降幂公式解题(如P106例3的解法1),阅读课本P107的例4,学会公式灵活运用.(3)探究:求的值. 3. 典型例题(1) 熟悉公式例1 已知,求,的值.分析:先利用同角三角函数的关系求出,再分别套用二倍角正弦、余弦公式,注意角的范围.解:,.,(2) 应用二倍角公式进行化简、求值、证明等例2 已知, ,求.分析:先求,再求,最后求,注意的范围.解:,解得, 又,.例3 已知的值分析:(1)先降幂,再用和差角公式展开,(2)条件展开为关于“”的条件,对需要求值的式子先化简,对“切”化成“弦”,对“”用二倍角公式,注意“”、 “” 、“”这三者的关系.解:由

3、得,两边平方得:,=.例4 求值:(1);(2);(3).分析:(1)由这些角中后一角为前一角的两倍,联想到用正弦的二倍角公式;(2)这是4个正弦的积,且它们的角之间难以看出明显的关系.仿(1)将部分正弦化为余弦,用类似(1)的方法解题;(3)注意到与的关系,选择恰当的公式向“同角”方向努力.解:(1)原式=(2)原式=(3)原式=(3) 升幂、降幂公式的应用降幂公式,特点:降幂同时扩角,当遇到且不需要“平方”时,常考虑该公式.升幂公式,特点:升幂同时缩角,当遇到时,常考虑该公式.例5 化简:,分析:分母显然用升幂公式,分子中的“1”可与结合换成同时对用二倍角公式;也可把“1”与结合用升幂公式

4、同时对也用二倍角公式,公式选择的主要依据依然是“同角”.解:原式=原式=例6 (1)已知,求的值;(2)求函数的最大值分析:(1)只要求,将已知两等式平方相加即可;(2)不是特殊角应先降幂扩角,再用和差角公式展开.解:(1)将,分别平方并相加得:,即.(2)=4. 自我检测(1)已知,则的值为_(2)等腰三角形的一个底角的正弦为,则这个三角形的顶角的正切为_(3)不查表求值: (4)计算: (5)化简:=_(6)求值:(1);(2).(7)求证:函数是常数函数三、 课后巩固练习 A组1已知,则的值等于_2已知,则 3已知,则等于_4函数的最小值是_5已知_6求值:(1); (2) ; (3)

5、.7已知,且为锐角,求的值 8已知,求的值 9. 若,则= .10. 若,则 .11化简()B组12化简为_13已知 是第_象限角.14. 设为锐角,若,则的值为 15. 已知,则 16求值:(1) ; (2) 17已知,则、按从小到大的顺序排列为 18函数的值域是_19函数的值域为 20函数在区间上的最大值为1,则的最小值是 21已知函数.w.w.w.zxxk.c.o.m (1)求的最小正周期;(2)求在区上的最大值和最小值. 22(1) (2)(3) (4)(5) 试从上述五个式子中选择一个,求出这个常数; 根据()的计算结果,将该同学的发现推广三角恒等式,并证明你的结论.23设函数.(1

6、) 求函数的最大值和最小正周期;(2) 设为的三个内角,若,且为锐角,求.24. 已知函数,.()求函数的最小正周期;()求函数在区间上的最大值和最小值.25. 已知向量,函数(1)求的最大值及相应的的值;(2)若,求的值C组26若,则函数的最大值为 27已知函数.(1)求函数在上的值域;(2)在ABC中,若,求的值.28设函数(1)求的最小正周期; (2)若函数与的图像关于直线对称,求当时的最大值29已知,试求的值30已知,求的最大值和最小值知识点题号注意点二倍角公式注意角的变化,统一到同一个角降幂公式注意次数变化的同时角的变化综合题公式的灵活运用四、 学习心得五、 拓展视野课本向我们介绍了正弦函数与余弦函数的叠加函数(A,B不全为0),并指出该函数可以改写成,其中,一般地,我们把公式 (,)称为辅助角公式.下面我们来看它的两个应用:例1 求函数的最大值.解:=(其中,)例2 求函数的值域.解:将变形为, (其中, )即,解得函数的值域为.- 8 - 版权所有高考资源网

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1