1、课时分层作业(二十五)指数函数的概念、图象与性质(建议用时:40分钟)一、选择题1下列函数是指数函数的是()Ay(3)x By22x1Cyax Dy3xDA中y(3)x的底数30,得t1故2x1,即x03.已知a20.2,b20.3,c0.20.3,则()A.bac B.abcCbca Dacb答案A4已知集合M1,1,N则MN()A1 B0或1C1 D0,1C2x14,212x122,1x12,2x1又xZ,x0或x1,即N0,1,MN15下列图中,二次函数yax2bx与指数函数y的图象只可能为()A由指数函数y的图象知0,B、C、D都不正确二、填空题6设y140.9,y280.48,y3,
2、则y1,y2,y3的大小关系为y1y3y2y140.921.8,y280.4821.44,y321.5y2x在定义域内为增函数,且1.81.51.44,y1y3y27如图是指数函数(1)yax,(2)ybx,(3)ycx,(4)ydx的图象,则a,b,c,d与1的大小关系是ba1dd1a1b1,ba1dc8已知函数f(x) ,则f(log212)的值为因为函数f(x) ,所以f(log212)f(log2122)2f(log23)2f(log232)42244三、解答题9如果a2x1ax5(a0,a1),求x的取值范围解当0a1时,由a2x1ax5知2x1x5,解得x6当a1时,由a2x1ax
3、5,知2x1x5,解得x6综上所述,当0a1时,x的取值范围为x|x6;当a1时,x的取值范围为x|x610作出下列函数的简图(1)y2x1;(2)y2|x1|;(3)y|2x11|解(1)y2x1的图象经过点,(1,1)和(2,2)且是增函数,它是由y2x的图象向右平移1个单位得到的,如图(1)(2)y2|x1|的图象关于直线x1对称,当x1时是减函数,且与y的图象相同,如图(2)(3)y|2x11|的图象是由y2x的图象向右平移1个单位,再向下平移1个单位后,将x轴下方的图象沿x轴对折得到的图象经过(1,0)及(2,1)点,如图(3)1函数y|2x2|的图象是()By2x2的图象是由y2x
4、的图象向下平移2个单位长度得到的,故y|2x2|的图象是由y2x2的图象在x轴上方的部分不变,下方的部分对折到x轴的上方得到的2若函数f(x)是R上的增函数,则实数a的取值范围为()A4,8 B(4,8 C(4,8) D4,8)D因为f(x)在R上是增函数,所以结合图象(图略)知解得4a0且a1)的图象有两个实根,求a的取值范围解由y0得|ax1|12a因为函数y|ax1|12a (a0且a1)的图象有两个实根,所以直线y2a与函数y|ax1|1的图象有两个交点当a1时,函数y|ax1|1通过平移变换和翻折变换可得如图所示的图象(实线),由图可知12a2,即a1矛盾当0a1时,同样函数y|ax1|1通过平移变换和翻折变换得到如图所示的图象(虚线),由图可知12a2,即a0且a1)的图象有两个实根时,a的取值范围是