收藏 分享(赏)

2022年人教版九年级数学上册第二十五章概率初步专项练习练习题(含答案详解).docx

上传人:高**** 文档编号:3257818 上传时间:2024-07-02 格式:DOCX 页数:21 大小:341.52KB
下载 相关 举报
2022年人教版九年级数学上册第二十五章概率初步专项练习练习题(含答案详解).docx_第1页
第1页 / 共21页
2022年人教版九年级数学上册第二十五章概率初步专项练习练习题(含答案详解).docx_第2页
第2页 / 共21页
2022年人教版九年级数学上册第二十五章概率初步专项练习练习题(含答案详解).docx_第3页
第3页 / 共21页
2022年人教版九年级数学上册第二十五章概率初步专项练习练习题(含答案详解).docx_第4页
第4页 / 共21页
2022年人教版九年级数学上册第二十五章概率初步专项练习练习题(含答案详解).docx_第5页
第5页 / 共21页
2022年人教版九年级数学上册第二十五章概率初步专项练习练习题(含答案详解).docx_第6页
第6页 / 共21页
2022年人教版九年级数学上册第二十五章概率初步专项练习练习题(含答案详解).docx_第7页
第7页 / 共21页
2022年人教版九年级数学上册第二十五章概率初步专项练习练习题(含答案详解).docx_第8页
第8页 / 共21页
2022年人教版九年级数学上册第二十五章概率初步专项练习练习题(含答案详解).docx_第9页
第9页 / 共21页
2022年人教版九年级数学上册第二十五章概率初步专项练习练习题(含答案详解).docx_第10页
第10页 / 共21页
2022年人教版九年级数学上册第二十五章概率初步专项练习练习题(含答案详解).docx_第11页
第11页 / 共21页
2022年人教版九年级数学上册第二十五章概率初步专项练习练习题(含答案详解).docx_第12页
第12页 / 共21页
2022年人教版九年级数学上册第二十五章概率初步专项练习练习题(含答案详解).docx_第13页
第13页 / 共21页
2022年人教版九年级数学上册第二十五章概率初步专项练习练习题(含答案详解).docx_第14页
第14页 / 共21页
2022年人教版九年级数学上册第二十五章概率初步专项练习练习题(含答案详解).docx_第15页
第15页 / 共21页
2022年人教版九年级数学上册第二十五章概率初步专项练习练习题(含答案详解).docx_第16页
第16页 / 共21页
2022年人教版九年级数学上册第二十五章概率初步专项练习练习题(含答案详解).docx_第17页
第17页 / 共21页
2022年人教版九年级数学上册第二十五章概率初步专项练习练习题(含答案详解).docx_第18页
第18页 / 共21页
2022年人教版九年级数学上册第二十五章概率初步专项练习练习题(含答案详解).docx_第19页
第19页 / 共21页
2022年人教版九年级数学上册第二十五章概率初步专项练习练习题(含答案详解).docx_第20页
第20页 / 共21页
2022年人教版九年级数学上册第二十五章概率初步专项练习练习题(含答案详解).docx_第21页
第21页 / 共21页
亲,该文档总共21页,全部预览完了,如果喜欢就下载吧!
资源描述

1、人教版九年级数学上册第二十五章概率初步专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在44的正方形网格中,黑色部分的图形构成了一个轴对称图形,现在任意取一个白色小正方形涂黑,使黑色部分仍然

2、是一个轴对称图形的概率是()ABCD2、有一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是()A6B16C18D243、一个布袋里装有2个红球,3个黑球,4个白球,它们除颜色外都相同,从中任意摸出1个球,则下事件中,发生的可能性最大的是()A摸出的是白球B摸出的是黑球C摸出的是红球D摸出的是绿球4、在一个不透明的口袋中,装有若干个红球和3个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的频率是,则

3、估计盒子中红球的个数大约是A20个B16个C15个D12个5、如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45其中合理的是()ABCD6、下列命题是真命题的是()A相等的两个角是对顶角B相等的圆周角所对的弧相等C若,则D在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从

4、箱子里任意摸出1个球,摸到白球的概率是7、下列事件:(1)打开电视机,正在播放新闻;(2)下个星期天会下雨;(3)抛掷两枚质地均匀的骰子,向上一面的点数之和是1;(4)一个有理数的平方一定是非负数;(5)若,异号,则;属于确定事件的有()个A1B2C3D48、下列说法正确的是()A“抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件B“打开电视机,正在播放乒乓球比赛”是必然事件C“面积相等的两个三角形全等”是不可能事件D投掷一枚质地均匀的硬币100次,正面朝上的次数一定是50次9、如图在三条横线和三条竖线组成的图形中,任选两条横线和两条竖线都可以图成一个矩形,从这些矩形中任选一个,则所选矩形含

5、点A的概率是()ABCD10、掷一枚质地均匀的硬币5次,其中3次正面朝上,2次正面朝下,则再次掷出这枚硬币,正面朝下的概率是()A1BCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、2022年北京冬奥会的主题口号是“一起向未来”,一个不透明的口袋里装着分别标有汉字“一”、“起”、“向”、“未”、“来”的五个小球,除汉字不同之外,小球没有其它区别从中任取两个球,则取出的两个球上的汉字恰能组成“一起”或“未来”的概率为 _2、现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同从两个袋子中各随机摸出1个球,摸出的两个球颜

6、色相同的概率是_3、巧板是我国古代劳动人民的一项发明,被誉为“东方魔板”,它由五块等腰直角三角形、一块正方形和一块平行四边形组成如图是利用七巧板拼成的正方形,随机向该图形内抛一枚小针,则针尖落在阴影部分的概率为 _4、在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则估计口袋中白球大约有_个5、五张背面完全相同的卡片上分别写有、31、0.101001001(相邻两个1间依次多1个0)五个实数,如果将卡片字面朝下随意放在桌子上,任意取一张,抽到有理数的概率是_三、解答题(5小题,每小题10分,共计50分)1、节能灯质

7、量可根据其正常使用寿命的时间来衡量,使用时间越长,表明质量越好,且使用时间大于5千小时的节能灯定为优质品,否则为普通品设节能灯的使用寿命时间为t千小时,节能灯使用寿命类别如下:寿命时间(单位:千小时)节能灯使用寿命类别某生产厂家产品检测部门对两种不同型号的节能灯做质量检测试验,各随儿田耳权才产品作为样本,并将得到的试验结果制作成如下图所示的扇形统计图和条形统计图:根据上述调查数据,解决下列问题:(1)现从生产线上随机抽取两种型号的节能灯各1盏,求其中至少有1盏节能灯是优质品的概率;(2)工厂对节能灯实行“三包”服务,根据多年生产销售经验可知,每盏节能灯的利润y(单位:元)与其使用时间t(单位:

8、千小时)的关系如下表:使用时间t(单位:千小时)每盏节能灯的利润y(单位:无)1020请从平均利润角度考虑,该生产厂家应选择多生产哪种节能灯比较合算,说明理由2、小颖和小丽做“摸球”游戏:在一个不透明的袋子中装有编号为14的四个球(除编号外都相同),从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字若两次数字之和大于5,则小颖胜,否则小丽胜这个游戏对双方公平吗?请说明理由3、为了迎接建党100周年,学校举办了“感党恩跟党走”主题社团活动,小颖喜欢的社团有写作社团、书画社团、演讲社团、舞蹈社团(分别用字母A,B,C,D依次表示这四个社团),并把这四个字母分别写在四张完全相同的不透明的

9、卡片正面,然后将这四张卡片背面朝上洗匀后放在桌面上(1)小颖从中随机抽取一张卡片是舞蹈社团D的概率是 ;(2)小颖先从中随机抽取一张卡片,记录下卡片上的字母不放回,再从剩下的卡片中随机抽取一张卡片,记录下卡片上的字母,请用列表法或画树状图法求出小颖抽取的两张卡片中有一张是演讲社团C的概率4、为了解“停课不停学”期间,学生对线上学习方式的喜好情况,某校随机抽取40名学生进行问卷调查,其统计结果如表:最喜欢的线上学习方式(每人最多选一种)人数直播10录播a资源包5线上答疑8(1)求出a的值;(2)根据调查结果估计该校1000名学生中,最喜欢“线上答疑”的学生人数;(3)在最喜欢“资源包”的学生中,

10、有2名男生,3名女生,现从这5名学生中随机抽取2名学生介绍学习经验,求恰好抽到1名男生和1名女生的概率5、从2021年起,江苏省高考采用“”模式:“3”是指语文、数学、外语3科为必选科目,“1”是指在物理、历史2科中任选科,“2”是指在化学、生物、思想政治、地理4科中任选2科(1)若小丽在“1”中选择了历史,在“2”中已选择了地理,则她选择生物的概率是_;(2)若小明在“1”中选择了物理,用画树状图的方法求他在“2中选化学、生物的概率-参考答案-一、单选题1、B【解析】【分析】由在44正方形网格中,任选取一个白色的小正方形并涂黑,共有16种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的

11、有5种情况,直接利用概率公式求解即可求得答案【详解】解:由题意,共16-3=13种等可能情况,其中构成轴对称图形的有如下5个图所示的5种情况,概率为:;故选:B【考点】本题考查了求概率的方法:先列表展示所有等可能的结果数n,再找出某事件发生的结果数m,然后根据概率的定义计算出这个事件的概率=2、B【解析】【分析】先由频率之和为1计算出白球的频率,再由数据总数频率=频数计算白球的个数【详解】解:摸到红色球、黑色球的频率稳定在15%和45%,摸到白球的频率为1-15%-45%=40%,故口袋中白色球的个数可能是4040%=16个故选B【考点】本题考查了利用频率求频数的知识,具体数目应等于总数乘部分

12、所占总体的比值3、A【解析】【分析】个数最多的就是可能性最大的【详解】解:因为白球最多,所以被摸到的可能性最大故选A【考点】本题主要考查可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等4、D【解析】【分析】利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率【详解】设红球有x个,根据题意得,3:(3+x)1:5,解得x12,经检验:x12是原分式方程的解,所以估计盒子中红球的个数大约有12个,故选D

13、【考点】此题主要考查了利用频率估计概率,正确运用概率公式是解题关键5、B【解析】【分析】随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,据此进行判断即可【详解】解:当抛掷次数是100时,计算机记录“正面向上”的次数是47,“正面向上”的概率不一定是0.47,故错误;随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,故正确;若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率不一定是0.45,故错误故选:B【考点】本题考查了利用频率估计概率,明确概率的

14、定义是解题的关键6、D【解析】【分析】分别根据对顶角的定义,圆周角定理,不等式的基本性质及概率公式进行判断即可得到答案【详解】有公共顶点且两条边互为反向延长线的两个角是对顶角,故A选项错误,不符合题意;在同圆或等圆中,相等的圆周角所对的弧相等,故B选项错误,不符合题意;若,则,故C选项错误,不符合题意;在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是,故D选项正确,符合题意;故选:D【考点】本题考查了命题的真假,涉及对顶角的定义,圆周角定理,不等式的基本性质及概率公式,熟练掌握知识点是解题的关键7、B【解析】【分析】根据事件发生的可能

15、性大小逐一判断相应事件的类型,即可得答案【详解】(1)打开电视机,正在播放新闻是随机事件,(2)下个星期天会下雨是随机事件,(3)抛掷两枚质地均匀的骰子,向上一面的点数之和是1是不可能事件,是确定事件,(4)一个有理数的平方一定是非负数是确定事件,(5)若a、b异号,则a+b0是随机事件综上所述:属于确定事件的有(3)(4),共2个,故选:B【考点】本题考查的是必然条件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.熟练掌握基础知识是解题的关键8、A【解析】【分

16、析】根据必然事件、不可能事件、随机事件的概念可区别各类事件【详解】解:A、“抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件,故此选项正确;B、“打开电视机,正在播放乒乓球比赛” 是随机事件,故此选项错误;C、“面积相等的两个三角形全等” 是随机事件,故此选项错误;D、投掷一枚质地均匀的硬币100次,正面朝上的次数不一定是50次,故此选项错误;故选:A【考点】本题考查了必然事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件9、D【解析】【

17、分析】根据题意两条横线和两条竖线都可以组成矩形个数,再得出含点A矩形个数,进而利用概率公式求出即可【详解】解:两条横线和两条竖线都可以组成一个矩形,则如图的三条横线和三条竖线组成可以9个矩形,其中含点A矩形4个,所选矩形含点A的概率是故选:D【考点】本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题10、D【解析】【分析】直接利用概率的意义分析得出答案【详解】解:掷质地均匀硬币的试验,每次正面向上和向下的概率相同,再次掷出这枚硬币,正面朝上的概率是:故选:D【考点】此题主要考查了概率的意义,正确把握概率的意义是解题关键二、填空题1、【解析】【分析】先画树状图,得到2

18、0种等可能的结果,其中取出的两个球上的汉字恰能组成“一起”或“未来”的结果有4种,再由概率公式求解即可【详解】解:根据题意画图如下: 共有20种等可能的结果,其中取出的两个球上的汉字恰能组成“一起”或“未来”的结果有4种, 则取出的两个球上的汉字恰能组成“一起”或“未来”的概率为故答案为:【考点】本题考查的是用树状图法求概率树状图法适用于两步或两步以上完成的事件解题时注意:概率=所求情况数与总情况数之比2、【解析】【分析】列表得出所有等可能结果,从中找到两个球颜色相同的结果数,利用概率公式计算可得【详解】解:列表如下:黄红红红(黄,红)(红,红)(红,红)红(黄,红)(红,红)(红,红)白(黄

19、,白)(红,白)(红,白)由表知,共有9种等可能结果,其中摸出的两个球颜色相同的有4种结果,所以摸出的两个球颜色相同的概率为,故答案为【考点】本题考查了列表法与树状图的知识,解题的关键是能够用列表或列树状图将所有等可能的结果列举出来,难度不大3、【解析】【分析】设大正方形的边长为2,先求出阴影区域的面积,然后根据概率公式即可得出答案【详解】图,设小正方形的边长为1,根据等腰三角形和正方形的性质可求得AB=BE=,FG=DC=,则空白的面积为:;大正方形的面积是:,阴影区域的面积为:8-5=3,所以针尖落在在阴影区域上的概率是:故答案为:【考点】本题考查几何概率,熟练掌握几何概率的计算方法是解题

20、的关键4、15【解析】【分析】摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可【详解】设白球个数为:x个,摸到红色球的频率稳定在25%左右,口袋中得到红色球的概率为25%,解得:x=15,经检验,符合题意,即白球的个数为15个,故答案为:15【考点】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键5、#0.4【解析】【分析】根据题意可知有理数有31、,共2个,根据概率公式即可求解【详解】解:在、31、0.101001001(相邻两个1间依次多1个0)五个实数中,31、是有理数,任意取一张,抽到有理数的概率是故答案为:【考点】本题考查

21、了实数的分类,根据概率公式求概率,理解题意是解题的关键三、解答题1、 (1)0.5(2)B种,理由见解析【解析】【分析】(1)根据扇形统计图中的数据,可以计算出种型号的节能灯至少有1盏节能灯是优质品的概率,根据频数分布直方图可得种型号的节能灯至少有1盏节能灯是优质品的概率;(2)根据表格中的数据,可以计算出一台种型号的节能灯的平均利润和一台种型号的节能灯的平均利润,然后比较大小即可(1)解:由扇形统计图可得:种型号的节能灯至少有1盏节能灯是优质品的概率是,由频数分布直方图可得:种型号的节能灯至少有1盏节能灯是优质品的概率是:,即种型号的节能灯至少有1盏节能灯是优质品的概率是0.5,种型号的节能

22、灯至少有1盏节能灯是优质品的概率是0.5;(2)该生产厂家应选择多生产种节能灯比较合算,理由如下:由题意可得,一台种型号的节能灯的平均利润为:(元),一台种型号的节能灯的平均利润为:(元),该生产厂家应选择多生产种节能灯比较合算【考点】本题考查频数分布直方图、频数分布表、扇形统计图、概率,解答本题的关键是明确题意,利用数形结合的思想解答2、不公平;理由见解析【解析】【详解】试题分析:根据题意画出树状图,再分别求出两次数字之和大于5和两次数字之和不大于5的概率,如果概率相等,则游戏公平,如果不概率相等,则游戏不公平;试题解析:根据题意,画树状图如下:P(两次数字之和大于5) ,P(两次数字之和不

23、大于5) ,游戏不公平;3、(1);(2)见解析,【解析】【分析】(1)共有4种可能出现的结果,其中是舞蹈社团D的有一种,即可求出概率;(2)用列表法列举出所有可能出现的结果,从中找出一张是演讲社团C的结果数,进而求出概率【详解】解:(1)共有4种可能出现的结果,其中是舞蹈社团D的有1种,小颖从中随机抽取一张卡片是舞蹈社团D的概率是,故答案为:;(2)用列表法表示所有可能出现的结果如下:ABCDAABACADBBABCBDCCACBCDDDACBDC共有12种可能出现的结果,每种结果出现的可能性相同,其中有一张是演讲社团C的有6种,小颖抽取的两张卡片中有一张是演讲社团C的概率是【考点】本题考查

24、了用列表法或树状图法求概率,正确画出树状图或表格是解决本题的关键4、 (1);(2)喜欢“线上答疑”的学生人数为200人;(3)【解析】【分析】(1)根据四种学习方式的人数之和等于40可求出a的值;(2)用总人数乘以样本中最喜欢“线上答疑”的学生人数所占比例可得答案;(3)列表法展示所有20种等可能的结果数,再找出恰好抽到1名男生和1名女生的结果数,然后利用概率公式求解(1)解:;(2)解:最喜欢“线上答疑”的学生人数为(人);(3)解:设3个女生分别为女1,女2,女3,2个男生分别为男1,男2,所有可能出现的结果如下表:女1女2女3男1男2女1(女1,女2)(女1,女3)(女1, 男1)(女

25、1, 男2)女2(女2,女1)(女2,女3)(女2, 男1)(女2, 男2)女3(女3,女1)(女3,女2)(女3, 男1)(女3, 男2)男1(男1,女1)(男1,女2)(男1,女3)(男1, 男2)男2(男2,女1)(男2,女2)(男2,女3)(男2, 男1)从中随机抽取两个同学担任两角色,所有可能的结果有20种,每种结果的可能性都相同,其中,抽到1名男生和1名女生的结果有12种,所以抽到1名男生和1名女生的概率为【考点】本题考查统计图、列表法或树状图法:利用列表法或画树状图展示所有等可能的结果,再从中选出符合条件的事件数目,利用概率公式求概率5、(1);(2)图表见解析,【解析】【分析】(1)小丽在“2”中已经选择了地理,还需要从剩下三科中进行选择一科生物,根据概率公式计算即可(2)小明在“1”中已经选择了物理,可直接根据画树状图判断在4科中选择化学,生物的可能情况有2种,再根据一共有12种情况,通过概率公式求出答案即可【详解】(1);(2)列出树状图如图所示:由图可知,共有12种可能结果,其中选化学、生物的有2种,所以,(选化学、生物)答:小明同学选化学、生物的概率是【考点】本题考查了等可能概率事件,以及通过列表法或画树状图法判断可能情况概率,根据概率公式事件概率情况,解题关键在于要理解掌握等可能事件发生概率

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3