ImageVerifierCode 换一换
格式:DOCX , 页数:27 ,大小:1.39MB ,
资源ID:3252      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-3252-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(一元函数导数及其应用——2021年全国高考真题数学试题分类汇编 WORD版含解析.docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

一元函数导数及其应用——2021年全国高考真题数学试题分类汇编 WORD版含解析.docx

1、2021全国高考真题数学汇编一元函数的导数及其应用一、单选题1(2021全国高考真题(理)设,则()ABCD2(2021全国高考真题)若过点可以作曲线的两条切线,则()ABCD3(2021全国高考真题(理)设,若为函数的极大值点,则()ABCD4(2021浙江高考真题)已知函数,则图象为如图的函数可能是()ABCD二、填空题5(2021全国高考真题)已知函数,函数的图象在点和点的两条切线互相垂直,且分别交y轴于M,N两点,则取值范围是_6(2021全国高考真题(理)曲线在点处的切线方程为_7(2021全国高考真题)函数的最小值为_.8(2021全国高考真题)写出一个同时具有下列性质的函数_;当

2、时,;是奇函数三、解答题9(2021天津高考真题)已知,函数(I)求曲线在点处的切线方程:(II)证明存在唯一的极值点(III)若存在a,使得对任意成立,求实数b的取值范围10(2021全国高考真题)已知函数.(1)讨论的单调性;(2)设,为两个不相等的正数,且,证明:.11(2021全国高考真题(文)已知函数(1)讨论的单调性;(2)求曲线过坐标原点的切线与曲线的公共点的坐标12(2021全国高考真题(理)已知且,函数(1)当时,求的单调区间;(2)若曲线与直线有且仅有两个交点,求a的取值范围13(2021全国高考真题(理)设函数,已知是函数的极值点(1)求a;(2)设函数证明:14(202

3、1浙江高考真题)设a,b为实数,且,函数(1)求函数的单调区间;(2)若对任意,函数有两个不同的零点,求a的取值范围;(3)当时,证明:对任意,函数有两个不同的零点,满足.(注:是自然对数的底数)15(2021全国高考真题)已知函数(1)讨论的单调性;(2)从下面两个条件中选一个,证明:只有一个零点;16(2021全国高考真题(文)设函数,其中.(1)讨论的单调性;(2)若的图象与轴没有公共点,求a的取值范围.17(2021北京高考真题)已知函数(1)若,求曲线在点处的切线方程;(2)若在处取得极值,求的单调区间,以及其最大值与最小值参考答案1B【分析】利用对数的运算和对数函数的单调性不难对a

4、,b的大小作出判定,对于a与c,b与c的大小关系,将0.01换成x,分别构造函数,,利用导数分析其在0的右侧包括0.01的较小范围内的单调性,结合f(0)=0,g(0)=0即可得出a与c,b与c的大小关系.【详解】,所以;下面比较与的大小关系.记,则,,由于所以当0x0时,所以,即函数在0,+)上单调递减,所以,即,即bc;综上,,故选:B.【点睛】本题考查比较大小问题,难度较大,关键难点是将各个值中的共同的量用变量替换,构造函数,利用导数研究相应函数的单调性,进而比较大小,这样的问题,凭借近似估计计算往往是无法解决的.2D【分析】解法一:根据导数几何意义求得切线方程,再构造函数,利用导数研究

5、函数图象,结合图形确定结果;解法二:画出曲线的图象,根据直观即可判定点在曲线下方和轴上方时才可以作出两条切线.【详解】在曲线上任取一点Pt,et,对函数求导得,所以,曲线在点处的切线方程为,即,由题意可知,点在直线上,可得,令,则.当时,此时函数单调递增,当时,此时函数单调递减,所以,由题意可知,直线与曲线的图象有两个交点,则,当时,当时,作出函数的图象如下图所示:由图可知,当时,直线与曲线的图象有两个交点.故选:D.解法二:画出函数曲线的图象如图所示,根据直观即可判定点在曲线下方和轴上方时才可以作出两条切线.由此可知.故选:D.【点睛】解法一是严格的证明求解方法,其中的极限处理在中学知识范围

6、内需要用到指数函数的增长特性进行估计,解法二是根据基于对指数函数的图象的清晰的理解与认识的基础上,直观解决问题的有效方法.3D【分析】先考虑函数的零点情况,注意零点左右附近函数值是否变号,结合极大值点的性质,对进行分类讨论,画出图象,即可得到所满足的关系,由此确定正确选项.【详解】若,则为单调函数,无极值点,不符合题意,故.有和两个不同零点,且在左右附近是不变号,在左右附近是变号的.依题意,为函数的极大值点,在左右附近都是小于零的.当时,由,画出的图象如下图所示:由图可知ba,aa,故.综上所述,成立.故选:D【点睛】本小题主要考查三次函数的图象与性质,利用数形结合的数学思想方法可以快速解答.

7、4D【分析】由函数的奇偶性可排除A、B,结合导数判断函数的单调性可判断C,即可得解.【详解】对于A,该函数为非奇非偶函数,与函数图象不符,排除A;对于B,该函数为非奇非偶函数,与函数图象不符,排除B;对于C,则,当时,与图象不符,排除C.故选:D.5【分析】结合导数的几何意义可得,结合直线方程及两点间距离公式可得,化简即可得解.【详解】由题意,则,所以点和点,,所以,所以,所以,同理,所以.故答案为:【点睛】关键点点睛:解决本题的关键是利用导数的几何意义转化条件,消去一个变量后,运算即可得解.6【分析】先验证点在曲线上,再求导,代入切线方程公式即可【详解】由题,当时,故点在曲线上求导得:,所以

8、故切线方程为故答案为:71【分析】由解析式知定义域为,讨论、,并结合导数研究的单调性,即可求最小值.【详解】由题设知:定义域为,当时,此时单调递减;当时,有,此时单调递减;当时,有,此时单调递增;又在各分段的界点处连续,综上有:时,单调递减,时,单调递增;故答案为:1.8(答案不唯一,均满足)【分析】根据幂函数的性质可得所求的.【详解】取,则,满足,时有,满足,的定义域为,又,故是奇函数,满足.故答案为:(答案不唯一,均满足)9(I);(II)证明见解析;(III)【分析】(I)求出在处的导数,即切线斜率,求出,即可求出切线方程;(II)令,可得,则可化为证明与仅有一个交点,利用导数求出的变化

9、情况,数形结合即可求解;(III)令,题目等价于存在,使得,即,利用导数即可求出的最小值.【详解】(I),则,又,则切线方程为;(II)令,则,令,则,当时,单调递减;当时,单调递增,当时,当时,画出大致图像如下:所以当时,与仅有一个交点,令,则,且,当时,则,单调递增,当时,则,单调递减,为的极大值点,故存在唯一的极值点;(III)由(II)知,此时,所以,令,若存在a,使得对任意成立,等价于存在,使得,即,当时,单调递减,当时,单调递增,所以,故,所以实数b的取值范围.【点睛】关键点睛:第二问解题的关键是转化为证明与仅有一个交点;第三问解题的关键是转化为存在,使得,即.10(1)的递增区间

10、为,递减区间为;(2)证明见解析.【分析】(1) 首先确定函数的定义域,然后求得导函数的解析式,由导函数的符号即可确定原函数的单调性.(2)方法二:将题中的等式进行恒等变换,令,命题转换为证明:,然后构造对称差函数,结合函数零点的特征和函数的单调性即可证得题中的结论.【详解】(1)的定义域为由得,当时,;当时;当时,故在区间内为增函数,在区间内为减函数,(2)方法一:等价转化由得,即由,得由(1)不妨设,则,从而,得,令, 则,当时,在区间内为减函数,从而,所以,由(1)得即令,则,当时,在区间内为增函数,从而,所以又由,可得,所以由得方法二【最优解】:变形为,所以令则上式变为,于是命题转换为

11、证明:令,则有,不妨设由(1)知,先证要证:令,则,在区间内单调递增,所以,即再证因为,所以令,所以,故在区间内单调递增所以故,即综合可知方法三:比值代换证明同证法2以下证明不妨设,则,由得,要证,只需证,两边取对数得,即,即证记,则.记,则,所以,在区间内单调递减,则,所以在区间内单调递减由得,所以,即方法四:构造函数法由已知得,令,不妨设,所以由()知,只需证证明同证法2再证明令令,则所以,在区间内单调递增因为,所以,即又因为,所以,即因为,所以,即综上,有结论得证【整体点评】(2)方法一:等价转化是处理导数问题的常见方法,其中利用的对称差函数,构造函数的思想,这些都是导数问题必备的知识和

12、技能.方法二:等价转化是常见的数学思想,构造对称差函数是最基本的极值点偏移问题的处理策略.方法三:比值代换是一种将双变量问题化为单变量问题的有效途径,然后构造函数利用函数的单调性证明题中的不等式即可.方法四:构造函数之后想办法出现关于的式子,这是本方法证明不等式的关键思想所在.11(1)答案见解析;(2) 和.【分析】(1)首先求得导函数的解析式,然后分类讨论导函数的符号即可确定原函数的单调性;(2)首先求得导数过坐标原点的切线方程,然后将原问题转化为方程求解的问题,据此即可求得公共点坐标.【详解】(1)由函数的解析式可得:,导函数的判别式,当时,在R上单调递增,当时,的解为:,当时,单调递增

13、;当时,单调递减;当时,单调递增;综上可得:当时,在R上单调递增,当时,在,上单调递增,在上单调递减. (2)由题意可得:,则切线方程为:,切线过坐标原点,则:,整理可得:,即:,解得:,则,切线方程为:,与联立得,化简得,由于切点的横坐标1必然是该方程的一个根,是的一个因式,该方程可以分解因式为解得,,综上,曲线过坐标原点的切线与曲线的公共点的坐标为和.【点睛】本题考查利用导数研究含有参数的函数的单调性问题,和过曲线外一点所做曲线的切线问题,注意单调性研究中对导函数,要依据其零点的不同情况进行分类讨论;再求切线与函数曲线的公共点坐标时,要注意除了已经求出的切点,还可能有另外的公共点(交点),

14、要通过联立方程求解,其中得到三次方程求解时要注意其中有一个实数根是求出的切点的横坐标,这样就容易通过分解因式求另一个根.三次方程时高考压轴题中的常见问题,不必恐惧,一般都能容易找到其中一个根,然后在通过分解因式的方法求其余的根.12(1)上单调递增;上单调递减;(2).【分析】(1)求得函数的导函数,利用导函数的正负与函数的单调性的关系即可得到函数的单调性;(2)方法一:利用指数对数的运算法则,可以将曲线与直线有且仅有两个交点等价转化为方程有两个不同的实数根,即曲线与直线有两个交点,利用导函数研究的单调性,并结合的正负,零点和极限值分析的图象,进而得到,发现这正好是,然后根据的图象和单调性得到

15、的取值范围.【详解】(1)当时,,令得,当时,,当时,,函数在上单调递增;上单调递减;(2)方法一【最优解】:分离参数,设函数,则,令,得,在内,单调递增;在上,单调递减;,又,当趋近于时,趋近于0,所以曲线与直线有且仅有两个交点,即曲线与直线有两个交点的充分必要条件是,这即是,所以的取值范围是.方法二:构造差函数由与直线有且仅有两个交点知,即在区间内有两个解,取对数得方程在区间内有两个解构造函数,求导数得当时,在区间内单调递增,所以,在内最多只有一个零点,不符合题意;当时,令得,当时,;当时,;所以,函数的递增区间为,递减区间为由于,当时,有,即,由函数在内有两个零点知,所以,即构造函数,则

16、,所以的递减区间为,递增区间为,所以,当且仅当时取等号,故的解为且所以,实数a的取值范围为方法三分离法:一曲一直曲线与有且仅有两个交点等价为在区间内有两个不相同的解因为,所以两边取对数得,即,问题等价为与有且仅有两个交点当时,与只有一个交点,不符合题意当时,取上一点在点的切线方程为,即当与为同一直线时有得直线的斜率满足:时,与有且仅有两个交点记,令,有在区间内单调递增;在区间内单调递减;时,最大值为,所当且时有综上所述,实数a的取值范围为方法四:直接法因为,由得当时,在区间内单调递减,不满足题意;当时,由得在区间内单调递增,由得在区间内单调递减因为,且,所以,即,即,两边取对数,得,即令,则,

17、令,则,所以在区间内单调递增,在区间内单调递减,所以,所以,则的解为,所以,即故实数a的范围为【整体点评】本题考查利用导数研究函数的单调性,根据曲线和直线的交点个数求参数的取值范围问题,属较难试题,方法一:将问题进行等价转化,分离参数,构造函数,利用导数研究函数的单调性和最值,图象,利用数形结合思想求解.方法二:将问题取对,构造差函数,利用导数研究函数的单调性和最值.方法三:将问题取对,分成与两个函数,研究对数函数过原点的切线问题,将切线斜率与一次函数的斜率比较得到结论方法四:直接求导研究极值,单调性,最值,得到结论.13(1);(2)证明见详解【分析】(1)由题意求出,由极值点处导数为0即可

18、求解出参数;(2)由(1)得,且,分类讨论和,可等价转化为要证,即证在和上恒成立,结合导数和换元法即可求解【详解】(1)由,又是函数的极值点,所以,解得;(2)方法一:转化为有分母的函数由()知,其定义域为要证,即证,即证()当时,即证令,因为,所以在区间内为增函数,所以()当时,即证,由()分析知在区间内为减函数,所以综合()()有方法二 【最优解】:转化为无分母函数由(1)得,且,当 时,要证, ,即证,化简得;同理,当时,要证, ,即证,化简得;令,再令,则,令,当时,单减,故;当时,单增,故;综上所述,在恒成立.方法三 :利用导数不等式中的常见结论证明令,因为,所以在区间内是增函数,在

19、区间内是减函数,所以,即(当且仅当时取等号)故当且时,且,即,所以()当时,所以,即,所以()当时,同理可证得综合()()得,当且时,即【整体点评】(2)方法一利用不等式的性质分类转化分式不等式:当时,转化为证明,当时,转化为证明,然后构造函数,利用导数研究单调性,进而证得;方法二利用不等式的性质分类讨论分别转化为整式不等式:当时,成立和当时,成立,然后换元构造,利用导数研究单调性进而证得,通性通法,运算简洁,为最优解;方法三先构造函数,利用导数分析单调性,证得常见常用结论(当且仅当时取等号)然后换元得到,分类讨论,利用不等式的基本性质证得要证得不等式,有一定的巧合性.14(1)时,在上单调递

20、增;时,函数的单调减区间为,单调增区间为;(2);(3)证明见解析.【分析】(1)首先求得导函数的解析式,然后分类讨论即可确定函数的单调性;(2)将原问题进行等价转化,然后构造新函数,利用导函数研究函数的性质并进行放缩即可确定实数a的取值范围;(3)方法一:结合(2)的结论将原问题进行等价变形,然后利用分析法即可证得题中的结论成立.【详解】(1),若,则,所以在上单调递增;若,当时,单调递减,当时,单调递增.综上可得,时,在上单调递增;时,函数的单调减区间为,单调增区间为.(2)有2个不同零点有2个不同解有2个不同的解,令,则,记,记,又,所以时,时,则在单调递减,单调递增,.即实数的取值范围

21、是.(3)方法一【最优解】:有2个不同零点,则,故函数的零点一定为正数.由(2)可知有2个不同零点,记较大者为,较小者为,注意到函数在区间上单调递减,在区间上单调递增,故,又由知,要证,只需,且关于的函数在上单调递增,所以只需证,只需证,只需证,只需证在时为正,由于,故函数单调递增,又,故在时为正,从而题中的不等式得证.方法二:分析+放缩法有2个不同零点,不妨设,由f(x)=exb得x1lnb4)且要证,只需证,即证,只需证又,所以,即所以只需证而,所以,又,所以只需证所以f(ln(blnb)=blnbbln(blnb)+e2=blnlnb+e2e4ln4+e20,原命题得证方法三:若且,则满

22、足且,由()知有两个零点且0x1lnbx2又f(2)=2e22b0,故进一步有0x12lnbblnb2e2x1+e2bbx2e2blnb2e2bx1ex2blnb2e2ex1+e2因为,所以,故只需证又因为在区间内单调递增,故只需证,即,注意时有,故不等式成立【整体点评】本题第二、三问均涉及利用导数研究函数零点问题,其中第三问难度更大,涉及到三种不同的处理方法,方法一:直接分析零点,将要证明的不等式消元,代换为关于的函数,再利用零点反代法,换为关于的不等式,移项作差构造函数,利用导数分析范围.方法二:通过分析放缩,找到使得结论成立的充分条件,方法比较冒险!方法三:利用两次零点反代法,将不等式化

23、简,再利用函数的单调性,转化为与0比较大小,代入函数放缩得到结论.15(1)答案见解析;(2)证明见解析.【分析】(1)首先求得导函数的解析式,然后分类讨论确定函数的单调性即可;(2)由题意结合(1)中函数的单调性和函数零点存在定理即可证得题中的结论.【详解】(1)由函数的解析式可得:,当时,若,则单调递减,若,则单调递增;当时,若,则单调递增,若,则单调递减,若,则单调递增;当时,在上单调递增;当时,若,则单调递增,若,则单调递减,若,则单调递增;(2)若选择条件:由于,故,则,而,而函数在区间上单调递增,故函数在区间上有一个零点.,由于,故aln2a2ln2a0,结合函数的单调性可知函数在

24、区间上没有零点.综上可得,题中的结论成立.若选择条件:由于,故,则f0=b12a14,4a0,而函数在区间上单调递增,故函数在区间上有一个零点.当时,构造函数,则,当x,0时,Hx0,Hx单调递增,注意到,故Hx0恒成立,从而有:,此时:fx=x1exax2bx1x+1ax2+b =1ax2+b1,当x1b1a时,1ax2+b10,取x0=1b1a+1,则fx00,即:f00,而函数在区间上单调递增,故函数在区间上有一个零点.,由于,故,结合函数的单调性可知函数在区间上没有零点.综上可得,题中的结论成立.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,

25、所以在历届高考中,对导数的应用的考查都非常突出,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数(3)利用导数求函数的最值(极值),解决生活中的优化问题(4)考查数形结合思想的应用16(1)的减区间为,增区间为;(2).【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)根据及(1)的单调性性可得,从而可求a的取值范围.【详解】(1)函数的定义域为,又,因为,故,当时,;当时,;所以的减区间为,增区间为.(2)因为且的图与轴没有公共点,所以的图象在轴的上方,由(1)中函数的单调性可得,故即.【点睛】方法点睛:不等式的恒成立问题,往往可转化为函数的最值的符号来讨论,也可以参变分离后转化不含参数的函数的最值问题,转化中注意等价转化.17(1);(2)函数的增区间为、,单调递减区间为,最大值为,最小值为.【分析】(1)求出、的值,利用点斜式可得出所求切线的方程;(2)由可求得实数的值,然后利用导数分析函数的单调性与极值,由此可得出结果.【详解】(1)当时,则,此时,曲线在点处的切线方程为,即;(2)因为,则,由题意可得,解得,故,列表如下:增极大值减极小值增所以,函数的增区间为、,单调递减区间为.当时,;当时,.所以,

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3