ImageVerifierCode 换一换
格式:DOC , 页数:19 ,大小:220KB ,
资源ID:324893      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-324893-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2018高考一轮通用人教A版数学(文)(练习)第8章 热点探究课5 平面解析几何中的高考热点问题 WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2018高考一轮通用人教A版数学(文)(练习)第8章 热点探究课5 平面解析几何中的高考热点问题 WORD版含答案.doc

1、热点探究课(五)平面解析几何中的高考热点问题命题解读圆锥曲线是平面解析几何的核心内容,每年高考必考一道解答题,常以求圆锥曲线的标准方程、位置关系、定点、定值、最值、范围、探索性问题为主这些试题的命制有一个共同的特点,就是起点低,但在第(2)问或第(3)问中一般都伴有较为复杂的运算,对考生解决问题的能力要求较高,通常作为压轴题的形式出现热点1圆锥曲线的标准方程与性质圆锥曲线的标准方程在高考中占有十分重要的地位一般地,求圆锥曲线的标准方程是作为解答题中考查“直线与圆锥曲线”的第一小题,最常用的方法是定义法与待定系数法离心率是高考对圆锥曲线考查的另一重点,涉及a,b,c三者之间的关系另外抛物线的准线

2、,双曲线的渐近线也是命题的热点(2017石家庄质检)如图1,椭圆1(ab0)的左、右焦点分别为F1,F2,过F2的直线交椭圆于P,Q两点,且PQPF1.图1(1)若|PF1|2,|PF2|2,求椭圆的标准方程;(2)若|PF1|PQ|,求椭圆的离心率e. 【导学号:31222329】解(1)由椭圆的定义,2a|PF1|PF2|(2)(2)4,故a2.设椭圆的半焦距为c,由已知PF1PF2,因此2c|F1F2|2.3分即c,从而b1,故所求椭圆的标准方程为y21.5分(2)连接F1Q,如图,由椭圆的定义知|PF1|PF2|2a,|QF1|QF2|2a,又|PF1|PQ|PF2|QF2|(2a|P

3、F1|)(2a|QF1|),可得|QF1|4a2|PF1|. 又因为PF1PQ且|PF1|PQ|,所以|QF1|PF1|.8分由可得|PF1|(42)a,从而|PF2|2a|PF1|(22)a.由PF1PF2,知|PF1|2|PF2|2|F1F2|2,即(42)2a2(22)2a24c2,10分可得(96)a2c2,即96,因此e.12分规律方法1.用定义法求圆锥曲线的标准方程是常用的方法,同时应注意数形结合思想的应用2圆锥曲线的离心率刻画曲线的扁平程度,只需明确a,b,c中任意两量的关系都可求出离心率,但一定注意不同曲线离心率取值范围的限制对点训练1已知椭圆中心在坐标原点,焦点在x轴上,离心

4、率为,它的一个顶点为抛物线x24y的焦点(1)求椭圆的标准方程;(2)若直线yx1与抛物线相切于点A,求以A为圆心且与抛物线的准线相切的圆的方程解(1)椭圆中心在原点,焦点在x轴上设椭圆的方程为1(ab0),因为抛物线x24y的焦点为(0,1),所以b1.2分由离心率e,a2b2c21c2,从而得a,所以椭圆的标准方程为y21.5分(2)由解得所以点A(2,1).8分因为抛物线的准线方程为y1,所以圆的半径r1(1)2,所以圆的方程为(x2)2(y1)24.12分热点2圆锥曲线中的定点、定值问题定点、定值问题一般涉及曲线过定点、与曲线上的动点有关的定值问题以及与圆锥曲线有关的弦长、面积、横(纵

5、)坐标等的定值问题角度1圆锥曲线的定值问题(2016北京高考)已知椭圆C:1过A(2,0),B(0,1)两点. 【导学号:31222330】(1)求椭圆C的方程及离心率;(2)设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值解(1)由题意得a2,b1,所以椭圆C的方程为y21.3分又c,所以离心率e.5分(2)证明:设P(x0,y0)(x00,y00),则x4y4.又A(2,0),B(0,1),所以直线PA的方程为y(x2).7分令x0,得yM,从而|BM|1yM1.直线PB的方程为yx1.9分令y0,得xN,从而|AN|2xN

6、2.所以四边形ABNM的面积S|AN|BM|2.从而四边形ABNM的面积为定值.12分规律方法1.求定值问题的常用方法:(1)从特殊入手,求出定值,再证明这个值与变量无关(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值2定值问题就是在运动变化中寻找不变量的问题,基本思路是使用参数表示要解决的问题,证明要解决的问题与参数无关在这类问题中选择消元的方向是非常关键的角度2圆锥曲线中的定点问题设椭圆E:1(ab0)的离心率为e,且过点. 【导学号:31222331】(1)求椭圆E的方程;(2)设椭圆E的左顶点是A,若直线l:xmyt0与椭圆E相交于不同的两点M,N(M,N与A均不重合)

7、,若以MN为直径的圆过点A,试判定直线l是否过定点,若过定点,求出该定点的坐标解(1)由e2,可得a22b2,2分椭圆方程为1,代入点可得b22,a24,故椭圆E的方程为1.5分(2)由xmyt0得xmyt,把它代入E的方程得(m22)y22mtyt240,设M(x1,y1),N(x2,y2),则y1y2,y1y2,x1x2m(y1y2)2t,x1x2(my1t)(my2t)m2y1y2tm(y1y2)t2.8分因为以MN为直径的圆过点A,所以AMAN,所以(x12,y1)(x22,y2)x1x22(x1x2)4y1y2240.10分因为M,N与A均不重合,所以t2,所以t,直线l的方程是xm

8、y,直线l过定点T,由于点T在椭圆内部,故满足判别式大于0,所以直线l过定点T.12分规律方法1.假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点2从特殊位置入手,找出定点,再证明该点适合题意热点3圆锥曲线中的最值、范围问题圆锥曲线中的最值问题大致可分为两类:一是涉及距离、面积的最值以及与之相关的一些问题;二是求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时求解与之有关的一些问题已知椭圆y21上两个不同的点A,B关于直线ymx对称图2(1)求实数m的取值范围;(2)求AOB面积的最大值(O

9、为坐标原点)解(1)由题意知m0,可设直线AB的方程为yxb.由消去y,得x2xb210.2分因为直线yxb与椭圆y21有两个不同的交点,所以2b220.将线段AB中点M代入直线方程ymx,解得b.由得m.故m的取值范围是.5分(2)令t,则|AB|,且O到直线AB的距离为d.7分设AOB的面积为S(t),所以S(t)|AB|d,当且仅当t2,即m时,等号成立故AOB面积的最大值为.12分规律方法范围(最值)问题的主要求解方法:(1)几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决(2)代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数或等量关

10、系,利用判别式、基本不等式、函数的性质、导数法进行求解对点训练2已知椭圆C:1(ab0)的焦距为4,且过点(,2)(1)求椭圆C的方程;(2)过椭圆焦点的直线l与椭圆C分别交于点E,F,求的取值范围. 【导学号:31222332】解由椭圆C:1(ab0)的焦距为4.得曲线C的焦点F1(0,2),F2(0,2).2分又点(,2)在椭圆C上,2a4,所以a2,b2,即椭圆C的方程是1.5分(2)若直线l垂直于x轴,则点E(0,2),F(0,2),8.若直线l不垂直于x轴,设l的方程为ykx2,点E(x1,y1),F(x2,y2),将直线l的方程代入椭圆C的方程得到:(2k2)x24kx40,则x1

11、x2,x1x2,8分所以x1x2y1y2(1k2)x1x22k(x1x2)448.10分因为010,所以8b0)的离心率是,点P(0,1)在短轴CD上,且1.图3(1)求椭圆E的方程;(2)设O为坐标原点,过点P的动直线与椭圆交于A,B两点是否存在常数,使得为定值?若存在,求的值;若不存在,请说明理由解(1)由已知,点C,D的坐标分别为(0,b),(0,b)又点P的坐标为(0,1),且1,于是解得a2,b.4分所以椭圆E的方程为1.5分(2)当直线AB的斜率存在时,设直线AB的方程为ykx1,A,B的坐标分别为(x1,y1),(x2,y2)联立得(2k21)x24kx20.8分其判别式(4k)

12、28(2k21)0,所以x1x2,x1x2.从而,x1x2y1y2x1x2(y11)(y21)(1)(1k2)x1x2k(x1x2)12.所以,当1时,23.10分此时,3为定值当直线AB斜率不存在时,直线AB即为直线CD.此时,213.故存在常数1,使得为定值3.12分热点探究训练(五)平面解析几何中的高考热点问题1(2014全国卷)设F1,F2分别是椭圆C:1(ab0)的左、右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|5|F1N|,求a,b.解(1)根据c及题设知M,2b23a

13、c.2分将b2a2c2代入2b23ac,解得,2(舍去)故C的离心率为.5分(2)由题意,原点O为F1F2的中点,MF2y轴,所以直线MF1与y轴的交点D(0,2)是线段MF1的中点,故4,即b24a.8分由|MN|5|F1N|得|DF1|2|F1N|.设N(x1,y1),由题意知y10,则即10分代入C的方程,得1.将及c代入得1.解得a7,b24a28,故a7,b2.12分2已知椭圆C的方程为:x22y24.(1)求椭圆C的离心率;(2)设O为坐标原点,若点A在直线y2上,点B在椭圆C上,且OAOB,求线段AB长度的最小值解(1)由题意,椭圆C的标准方程为1,所以a24,b22,从而c2a

14、2b22.2分因此a2,c.故椭圆C的离心率e.5分(2)设点A,B的坐标分别为(t,2),(x0,y0),其中x00.因为OAOB,则0,所以tx02y00,解得t.8分又x2y4,所以|AB|2(x0t)2(y02)22(y02)2xy4x44(0x4).10分因为4(0b0)的离心率为,点P(0,1)和点A(m,n)(m0)都在椭圆C上,直线PA交x轴于点M. 【导学号:31222334】(1)求椭圆C的方程,并求点M的坐标(用m,n表示);(2)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N.问:y轴上是否存在点Q,使得OQMONQ?若存在,求点Q的坐标;若不存在,说明理由解

15、b1,e,解得a22.3分故椭圆C的方程为y21.设M(xM,0),由于点A(m,n)在椭圆C上,1nb0)的右焦点为F(1,0),右顶点为A,且|AF|1.图5(1)求椭圆C的标准方程;(2)若动直线l:ykxm与椭圆C有且只有一个交点P,且与直线x4交于点Q,问:是否存在一个定点M(t,0),使得 0.若存在,求出点M的坐标;若不存在,说明理由. 【导学号:31222335】解(1)由c1,ac1,得a2,b,3分故椭圆C的标准方程为1.5分(2)由消去y得(34k2)x28kmx4m2120,64k2m24(34k2)(4m212)0,即m234k2.8分设P(xP,yP),则xP,yP

16、kxPmm,即P.M(t,0),Q(4,4km),(4t,4km),10分(4t)(4km)t24t3(t1)0恒成立,故即t1.存在点M(1,0)符合题意.12分6(2016全国卷)已知抛物线C:y22x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点(1)若F在线段AB上,R是PQ的中点,证明ARFQ;(2)若PQF的面积是ABF的面积的两倍,求AB中点的轨迹方程解由题意知F,设直线l1的方程为ya,直线l2的方程为yb,则ab0,且A,B,P,Q,R.记过A,B两点的直线为l,则l的方程为2x(ab)yab0.2分(1)证明:由于F在线段AB上,故1ab0.记AR的斜率为k1,FQ的斜率为k2,则k1bk2.所以ARFQ.5分(2)设l与x轴的交点为D(x1,0),则SABF|ba|FD|ba|,SPQF.8分由题意可得|ba|,所以x10(舍去)或x11.设满足条件的AB的中点为E(x,y)当AB与x轴不垂直时,由kABkDE可得(x1).10分而y,所以y2x1(x1)当AB与x轴垂直时,E与D重合,此时E点坐标为(1,0),满足方程y2x1.所以,所求的轨迹方程为y2x1.12分

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3