ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:80KB ,
资源ID:32399      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-32399-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文((全国版)2021届高考数学二轮复习 专题检测(十七)圆锥曲线中的最值、范围、证明问题(理含解析).doc)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

(全国版)2021届高考数学二轮复习 专题检测(十七)圆锥曲线中的最值、范围、证明问题(理含解析).doc

1、专题检测(十七) 圆锥曲线中的最值、范围、证明问题大题专攻强化练1(2019湖南省五市十校联考)已知椭圆C:1(ab0)的离心率为,右焦点为F,以原点O为圆心,椭圆C的短半轴长为半径的圆与直线xy0相切(1)求椭圆C的方程;(2)如图,过定点P(2,0)的直线l交椭圆C于A,B两点,连接AF并延长交C于M,求证:PFMPFB.解:(1)依题意可设圆O的方程为x2y2b2,圆O与直线xy0相切,b1,a2c21,又,a,椭圆C的方程为y21.(2)证明:依题意可知直线l的斜率存在,设l的方程为yk(x2)由得(12k2)x28k2x8k220,l与椭圆有两个交点,0,即2k21b0)的离心率为e

2、,点(,1)在椭圆D上(1)求椭圆D的方程;(2)过椭圆D内一点P(0,t)的直线l的斜率为k,且与椭圆D交于M,N两点,设直线OM,ON(O为坐标原点)的斜率分别为k1,k2,若对任意k,存在实数,使得k1k2k,求实数的取值范围解:(1)椭圆D的离心率e,ab,又点(,1)在椭圆D上,1,得a2,b,椭圆D的方程为1.(2)由题意得,直线l的方程为ykxt.由消元可得(2k21)x24ktx2t240.设M(x1,y1),N(x2,y2),则x1x2,x1x2,k1k22k2kt.由k1k2k,得k,此等式对任意的k都成立,即t22.点P(0,t)在椭圆内,0t22,即020)的准线l1与

3、x轴交于点M,直线l2:4x3y60与抛物线C没有公共点,动点P在抛物线C上,点P到l1,l2的距离之和的最小值等于2.(1)求抛物线C的方程;(2)过点M的直线与抛物线C交于两个不同的点A,B,设 ,求|AB|的取值范围解:(1)作PG,PH分别垂直于l1,l2,垂足为G,H,设抛物线C的焦点为F,则F.由抛物线定义知|PG|PF|,所以点P到直线l1,l2的距离之和的最小值即为点F到直线l2的距离,故2,又p0,所以p2.所以抛物线C的方程为y24x.(2)由(1)可得点M的坐标为(1,0),由题意知直线AB的斜率存在且不为0,设直线AB的方程为yk(x1)由消去x,整理得ky24y4k0

4、,因为直线AB与抛物线交于两个不同的点,所以1616k20,所以0k21.设A(x1,y1),B(x2,y2),则y1y24,y1y2,因为,M(1,0),所以(x11,y1)(x21,y2),所以y1y2,由可得k2.所以|AB| |y1y2| ,则|AB|216161616,令f(),1,则f()在上单调递减,因此可得2,所以016,所以0b0)的离心率为,其左焦点到点P(2,1)的距离为.不经过原点O的直线l与椭圆C相交于A,B两点,且线段AB被直线OP平分(1)求椭圆C的方程;(2)求ABP的面积取最大值时,直线l的方程解:(1)依题意知,e,左焦点(c,0)到点P(2,1)的距离d0

5、,得a24,c21,所以b23,故椭圆C的方程为1.(2)易得直线OP的方程为yx,设A(x1,y1),B(x2,y2),AB的中点R(x0,y0)(y00),其中y0x0.因为A,B在椭圆C上,所以1,1,两式相减得0,即0,故kAB.由题意可设直线l的方程为yxm(m0),代入1中,消去y并整理得3x23mxm230,由(3m)243(m23)3(12m2)0,得2m2且m0.由根与系数的关系,得x1x2m,x1x2,所以|AB|x1x2| .又点P(2,1)到直线l的距离d,所以ABP的面积SABP|AB|d,其中2m2且m0.令f(m)(4m)2(12m2)(2m2且m0),则f(m)4(m4)(m22m6)4(m4)(m1)(m1),令f(m)0,得m1(4和1不满足2m0,当m(1,2)且m0时,f(m)0,所以当m1时,SABP取得最大值,此时直线l的方程为3x2y220.

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1