ImageVerifierCode 换一换
格式:DOC , 页数:21 ,大小:410.50KB ,
资源ID:323084      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-323084-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(江苏省扬州市2013年中考数学真题试题(解析版).doc)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

江苏省扬州市2013年中考数学真题试题(解析版).doc

1、江苏省扬州市2013年中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项符合题目要求的,请根据正确选项前的字母代号填涂在答题卡相应位置上)1(3分)(2013扬州)2的倒数是()ABC2D2考点:倒数分析:根据倒数的定义即可求解解答:解:2的倒数是故选A点评:主要考查倒数的概念及性质倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数2(3分)(2013扬州)下列运算中,结果是a4的是()Aa2a3Ba12a3C(a2)3D(a)4考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方分析:根据同底数的幂的乘法以及除法法则以及幂的乘方法则即

2、可判断解答:解:A、a2a3=a5,故选项错误;B、a12a3=a9,故选项错误;C、(a2)3=a6,选项错误;D、正确故选D点评:本题考查同底数幂的除法,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题3(3分)(2013扬州)下列说法正确的是()A“明天降雨的概率是80%”表示明天有80%的时间都在降雨B“抛一枚硬币正面朝上的概率为”表示每抛2次就有一次正面朝上C“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的频率稳定在附近考点:概率的意义分析:概率是反映事件发生机会的

3、大小的概念,只是表示发生的机会的大小,机会大也不一定发生解答:解:A、“明天下雨的概率为80%”指的是明天下雨的可能性是80%,错误;B、这是一个随机事件,抛一枚硬币,出现正面朝上或者反面朝上都有可能,但事先无法预料,错误;C、这是一个随机事件,买这种彩票,中奖或者不中奖都有可能,但事先无法预料,错误D、正确故选D点评:正确理解概率的含义是解决本题的关键4(3分)(2013扬州)某几何体的三视图如图所示,则这个几何体是()A三棱柱B圆柱C正方体D三棱锥考点:由三视图判断几何体分析:如图所示,根据三视图的知识可使用排除法来解答解答:解:如图,俯视图为三角形,故可排除C、B主视图以及侧视图都是矩形

4、,可排除D故选A点评:本题考查了由三视图判断几何体的知识,难度一般,考生做此类题时可利用排除法解答5(3分)(2013扬州)下列图形中,由ABCD,能得到1=2的是()ABCD考点:平行线的性质分析:根据平行线的性质求解即可求得答案,注意掌握排除法在选择题中的应用解答:解:A、ABCD,1+2=180,故本选项错误;B、ABCD,1=3,2=3,1=2,故本选项正确;C、ABCD,BAD=CDA,当ACBD时,1=2;故本选项错误;D、当梯形ABCD是等腰梯形时,1=2,故本选项错误故选B点评:此题考查了平行线的性质此题难度不大,注意掌握数形结合思想的应用6(3分)(2013扬州)一个多边形的

5、每个内角均为108,则这个多边形是()A七边形B六边形C五边形D四边形考点:多边形内角与外角分析:首先求得外角的度数,然后利用360除以外角的度数即可求解解答:解:外角的度数是:180108=72,则这个多边形的边数是:36072=5故选C点评:本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理7(3分)(2013扬州)如图,在菱形ABCD中,BAD=80,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则CDF等于()A50B60C70D80考点:菱形的性质;全等三角形的判定与性质;线段垂直平分线的性质专题:几何综合题分析:连接BF,根据

6、菱形的对角线平分一组对角求出BAC,BCF=DCF,四条边都相等可得BC=CD,再根据菱形的邻角互补求出ABC,然后根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF,根据等边对等角求出ABF=BAC,从而求出CBF,再利用“边角边”证明BCF和DCF全等,根据全等三角形对应角相等可得CDF=CBF解答:解:如图,连接BF,在菱形ABCD中,BAC=BAD=80=40,BCF=DCF,BC=CD,BAD=80,ABC=180BAD=18080=100,EF是线段AB的垂直平分线,AF=BF,ABF=BAC=40,CBF=ABCABF=10040=60,在BCF和DCF中,BCFDCF

7、(SAS),CDF=CBF=60故选B点评:本题考查了菱形的性质,全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,综合题,但难度不大,熟记各性质是解题的关键8(3分)(2013扬州)方程x2+3x1=0的根可视为函数y=x+3的图象与函数的图象交点的横坐标,则方程x3+2x1=0的实根x0所在的范围是()ABCD考点:反比例函数与一次函数的交点问题分析:首先根据题意推断方程x3+2x1=0的实根是函数y=x2+2与y=的图象交点的横坐标,再根据四个选项中x的取值代入两函数解析式,找出抛物线的图象在反比例函数上方和反比例函数的图象在抛物线的上方两个点即可判定推断方程x3

8、+2x1=0的实根x所在范围解答:解:依题意得方程x3+2x1=0的实根是函数y=x2+2与y=的图象交点的横坐标,这两个函数的图象如图所示,它们的交点在第一象限,当x=时,y=x2+2=2,y=4,此时抛物线的图象在反比例函数下方;当x=时,y=x2+2=2,y=3,此时抛物线的图象在反比例函数下方;当x=时,y=x2+2=2,y=2,此时抛物线的图象在反比例函数上方;当x=1时,y=x2+2=3,y=1,此时抛物线的图象在反比例函数上方故方程x3+x1=0的实根x所在范围为:x故选C点评:此题考查了学生从图象中读取信息的数形结合能力解决此类识图题,同学们要注意分析其中的“关键点”,还要善于

9、分析各图象的变化趋势二、填空题(本大题共10小题,每小题3分,共30分,不需要写出解决过程,请把答案直接填在答题卡相应位置上)9(3分)(2013扬州)据了解,截止2013年5月8日,扬泰机场开通一年,客流量累计达到450000人次,数据450000用科学记数法可表示为4.5105考点:科学记数法表示较大的数分析:科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数解答:解:将450000用科学记数法表示为4.5105故答案为:4.5105点

10、评:此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值10(3分)(2013扬州)分解因式:a34ab2=a(a+2b)(a2b)考点:提公因式法与公式法的综合运用分析:观察原式a34ab2,找到公因式a,提出公因式后发现a24b2符合平方差公式的形式,再利用平方差公式继续分解因式解答:解:a34ab2,=a(a24b),=a(a+2b)(a2b)点评:本题考查了提公因式法与公式法分解因式,有公因式的首先提取公因式,最后一定要分解到各个因式不能再分解为止11(3分)(2013扬州)在温度不变的条件下,一定质量的气体

11、的压强p与它的体积V成反比例,当V=200时,p=50,则当p=25时,V=400考点:反比例函数的应用分析:首先利用待定系数法求得v与P的函数关系式,然后代入P求得v值即可解答:解:在温度不变的条件下,一定质量的气体的压强p与它的体积V成反比例,设P=当V=200时,p=50,k=VP=20050=10000,P=当P=25时,得v=400故答案为:400点评:本题考查了反比例函数的应用,解题的关键是利用待定系数法求得反比例函数的解析式12(3分)(2013扬州)为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞2

12、00条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有1200条鱼考点:用样本估计总体分析:先打捞200条鱼,发现其中带标记的鱼有5条,求出有标记的鱼占的百分比,再根据共有30条鱼做上标记,即可得出答案解答:解:打捞200条鱼,发现其中带标记的鱼有5条,有标记的鱼占100%=2.5%,共有30条鱼做上标记,鱼塘中估计有302.5%=1200(条)故答案为:1200点评:此题考查了用样本估计总体,关键是求出带标记的鱼占的百分比,运用了样本估计总体的思想13(3分)(2013扬州)在ABC中,AB=AC=5,sinABC=0.8,则BC=6考点:解直角三角形;等腰三角形的性质分析:根据题意做出图形,过

13、点A作ADBC于D,根据AB=AC=5,sinABC=0.8,可求出AD的长度,然后根据勾股定理求出BD的长度,继而可求出BC的长度解答:解:过点A作ADBC于D,AB=AC,BD=CD,在RtABD中,sinABC=0.8,AD=50.8=4,则BD=3,BC=BD+CD=3+3=6故答案为:6点评:本题考查了解直角三角形的知识,难度一般,解答本题的关键是构造直角三角形并解直角三角形以及勾股定理的应用14(3分)(2013扬州)如图,在梯形ABCD中,ADBC,AB=AD=CD,BC=12,ABC=60,则梯形ABCD的周长为30考点:等腰梯形的性质;等边三角形的判定与性质分析:过A作AED

14、C交BC于E,得出等边三角形ABE和平行四边形ADCE,推出AB=AD=DC=BE=CE,求出AD长,即可得出答案解答:解:过A作AEDC交BC于E,ADBC,四边形ADCE是平行四边形,AD=EC=DC,AE=DC,AB=CD,AB=AE,ABE是等边三角形,BE=AB=AE=DC=AD=CE,BC=12,AB=AD=DC=6,梯形ABCD的周长是AD+DC+BC+AB=6+6+12+6=30,故答案为:30点评:本题考查了平行四边形性质和判定,等边三角形的性质和判定,等腰梯形性质的应用,解此题的关键是能把等腰梯形转化成平行四边形和等边三角形15(3分)(2013扬州)如图,在扇形OAB中,

15、AOB=110,半径OA=18,将扇形OAB沿过点B的直线折叠,点O恰好落在上的点D处,折痕交OA于点C,则的长为5考点:弧长的计算;翻折变换(折叠问题)分析:如图,连接OD根据折叠的性质、圆的性质推知ODB是等边三角形,则易求AOD=110DOB=50;然后由弧长公式弧长的公式l=来求的长解答:解:如图,连接OD根据折叠的性质知,OB=DB又OD=OB,OD=OB=DB,即ODB是等边三角形,DOB=60AOB=110,AOD=AOBDOB=50,的长为=5股答案是:5点评:本题考查了弧长的计算,翻折变换(折叠问题)折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对

16、应边和对应角相等所以由折叠的性质推知ODB是等边三角形是解答此题的关键之处16(3分)(2013扬州)已知关于x的方程的解是负数,则n的取值范围为n2且n考点:分式方程的解分析:求出分式方程的解x=n2,得出n20,求出n的范围,根据分式方程得出n2,求出n,即可得出答案解答:解:,解方程得:x=n2,关于x的方程的解是负数,n20,解得:n2,又原方程有意义的条件为:x,n2,即n故答案为:n2且n点评:本题考查了分式方程的解和解一元一次不等式,关键是得出n20和n2,注意题目中的隐含条件2x+10,不要忽略17(3分)(2013扬州)矩形的两邻边长的差为2,对角线长为4,则矩形的面积为6考

17、点:勾股定理;矩形的性质分析:设矩形一条边长为x,则另一条边长为x2,然后根据勾股定理列出方程式求出x的值,继而可求出矩形的面积解答:解:设矩形一条边长为x,则另一条边长为x2,由勾股定理得,x2+(x2)2=42,整理得,x22x6=0,解得:x=1+或x=1(不合题意,舍去),另一边为:1,则矩形的面积为:(1+)(1)=6故答案为:6点评:本题考查了勾股定理及矩形的性质,难度适中,解答本题的关键是根据勾股定理列出等式求处矩形的边长,要求同学们掌握矩形面积的求法18(3分)(2013扬州)如图,已知O的直径AB=6,E、F为AB的三等分点,M、N为上两点,且MEB=NFB=60,则EM+F

18、N=考点:垂径定理;含30度角的直角三角形;勾股定理分析:延长ME交O于G,根据圆的中心对称性可得FN=EG,过点O作OHMN于H,连接MO,根据圆的直径求出OE,OM,再解直角三角形求出OH,然后利用勾股定理列式求出MH,再根据垂径定理可得MG=2MH,从而得解解答:解:如图,延长ME交O于G,E、F为AB的三等分点,MEB=NFB=60,FN=EG,过点O作OHMN于H,连接MO,O的直径AB=6,OE=OAAE=66=32=1,OM=6=3,MEB=60,OH=OEsin60=1=,在RtMOH中,MH=,根据垂径定理,MG=2MH=2=,即EM+FN=故答案为:点评:本题考查了垂径定理

19、,勾股定理的应用,以及解直角三角形,作辅助线并根据圆的中心对称性得到FN=EG是解题的关键,也是本题的难点三、解答题(本大题共10小题,共96分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19(8分)(2013扬州)(1)计算:;(2)先化简,再求值:(x+1)(2x1)(x3)2,其中x=2考点:整式的混合运算化简求值;实数的运算;负整数指数幂;特殊角的三角函数值分析:(1)根据负整数指数幂的性质和特殊角的三角函数值代入计算即可;(2)利用整式的乘法和完全平方公式展开化简后代入求值即可解答:解(1)原式=42+2=4+;(2)原式=2x2x+2x1x2+6x9

20、=x2+7x10,当x=2时,原式=41410=20点评:本题考查了实数的运算、负整数指数幂及特殊角的三角函数值,属于基础题,应重点掌握20(8分)(2013扬州)已知关于x、y的方程组的解满足x0,y0,求实数a的取值范围考点:解二元一次方程组;解一元一次不等式组专题:计算题分析:先利用加减消元法求出x、y,然后列出不等式组,再求出两个不等式的解集,然后求公共部分即可解答:解:,3得,15x=6y=33a+54,2得,4x6y=24a16,+得,19x=57a+38,解得x=3a+2,把x=3a+2代入得,5(3a+2)+2y=11a+18,解得y=2a+4,所以,方程组的解是,x0,y0,

21、由得,a,由得,a2,所以,a的取值范围是a2点评:本题考查的是二元一次方程组的解法,一元一次不等式组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)21(8分)(2013扬州)端午节期间,扬州某商场为了吸引顾客,开展有奖促销活动,设立了一个可以自由转动的转盘,转盘被分成4个面积相等的扇形,四个扇形区域里分别标有“10元”、“20元”、“30元”、“40元”的字样(如图)规定:同一日内,顾客在本商场每消费满100元就可以转装盘一次,商场根据转盘指针指向区域所标金额返

22、还相应数额的购物券,某顾客当天消费240元,转了两次转盘(1)该顾客最少可得20元购物券,最多可得80元购物券;(2)请用画树状图或列表的方法,求该顾客所获购物券金额不低于50元的概率考点:列表法与树状图法分析:(1)首先根据题意画出树状图,然后由树状图即可求得该顾客最少可得20元购物券,最多可得80元购物券;(2)由(1)中的树状图即可求得所有等可能的结果与该顾客所获购物券金额不低于50元的情况,然后利用概率公式求解即可求得答案解答:解:(1)画树状图得:则该顾客最少可得20元购物券,最多可得80元购物券;故答案为:20,80;(2)共有16种等可能的结果,该顾客所获购物券金额不低于50元的

23、有10种情况,该顾客所获购物券金额不低于50元的概率为:=点评:本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件注意概率=所求情况数与总情况数之比22(8分)(2013扬州)为声援扬州“运河申遗”,某校举办了一次运河知识竞赛,满分10分,学生得分为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包含9分)为优秀这次竞赛中甲乙两组学生成绩分布的条形统计图如图所示(1)补充完成下面的成绩统计分析表:组别平均分中位数方差合格率优秀率甲组6.763.4190%20%乙组7.17.51.

24、6980%10%(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是甲组的学生;(填“甲”或“乙”)(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组请你给出两条支持乙组同学观点的理由考点:条形统计图;加权平均数;中位数;方差专题:计算题分析:(1)将甲组成绩按照从小到大的顺序排列,找出第5、6个成绩,求出平均数即为甲组的中位数;找出乙组成绩,求出乙组的平均分,填表即可;(2)观察表格,成绩为7.1分处于中游略偏上,应为甲组的学生;(3)乙组的平均分高于甲组,中位数高于甲组

25、,方差小于甲组,所以乙组成绩好于甲组解答:解:(1)甲组的成绩为:3,6,6,6,6,6,7,8,9,10,甲组中位数为6,乙组成绩为5,5,6,7,7,8,8,8,8,9,平均分为(5+5+6+7+7+8+8+8+8+9)=7.1(分),填表如下:组别平均分中位数方差合格率优秀率甲组6.763.4190%20%乙组7.17.51.6980%10%(2)观察上表可知,小明是甲组的学生;(3)乙组的平均分,中位数高于甲组,方差小于甲组,故乙组成绩好于甲组故答案为:(1)6;7.1;(2)甲点评:此题考查了条形统计图,加权平均数,中位数,以及方差,弄清题意是解本题的关键23(10分)(2013扬州

26、)如图,在ABC中,ACB=90,AC=BC,点D在边AB上,连接CD,将线段CD绕点C顺时针旋转90至CE位置,连接AE(1)求证:ABAE;(2)若BC2=ADAB,求证:四边形ADCE为正方形考点:旋转的性质;全等三角形的判定与性质;等腰直角三角形;正方形的判定;相似三角形的判定与性质专题:证明题分析:(1)根据旋转的性质得到DCE=90,CD=CE,利用等角的余角相等得BCD=ACE,然后根据“SAS”可判断BCDACE,则B=CAE=45,所以DAE=90,即可得到结论;(2)由于BC=AC,则AC2=ADAB,根据相似三角形的判定方法得到DACCAB,则CDA=BCA=90,可判断

27、四边形ADCE为矩形,利用CD=CE可判断四边形ADCE为正方形解答:证明:(1)ACB=90,AC=BC,B=BAC=45,线段CD绕点C顺时针旋转90至CE位置,DCE=90,CD=CE,ACB=90,ACBACD=DCEACD,即BCD=ACE,在BCD和ACE中,BCDACE,B=CAE=45,BAE=45+45=90,ABAE;(2)BC2=ADAB,而BC=AC,AC2=ADAB,DAC=CAB,DACCAB,CDA=BCA=90,而DAE=90,DCE=90,四边形ADCE为矩形,CD=CE,四边形ADCE为正方形点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的

28、距离相等;对应点与旋转中心的连线段的夹角等于旋转角也考查了等腰直角三角形的性质、三角形全等、相似的判定与性质以及正方形的判定24(10分)(2013扬州)某校九(1)、九(2)两班的班长交流了为四川安雅地震灾区捐款的情况:()九(1)班班长说:“我们班捐款总数为1200元,我们班人数比你们班多8人”()九(2)班班长说:“我们班捐款总数也为1200元,我们班人均捐款比你们班人均捐款多20%”请根据两个班长的对话,求这两个班级每班的人均捐款数考点:分式方程的应用分析:首先设九(1)班的人均捐款数为x元,则九(2)班的人均捐款数为(1+20%)x元,然后根据我们班人数比你们班多8人,即可得方程:=

29、8,解此方程即可求得答案解答:解:设九(1)班的人均捐款数为x元,则九(2)班的人均捐款数为(1+20%)x元,则:=8,解得:x=25,经检验,x=25是原方程的解九(2)班的人均捐款数为:(1+20%)x=30(元)答:九(1)班人均捐款为25元,九(2)班人均捐款为30元点评:本题考查分式方程的应用注意分析题意,找到合适的等量关系是解决问题的关键25(10分)(2013扬州)如图,ABC内接于O,弦ADAB交BC于点E,过点B作O的切线交DA的延长线于点F,且ABF=ABC(1)求证:AB=AC;(2)若AD=4,cosABF=,求DE的长考点:切线的性质;圆周角定理;解直角三角形分析:

30、(1)由BF是O的切线,利用弦切角定理,可得3=C,又由ABF=ABC,可证得2=C,即可得AB=AC;(2)首先连接BD,在RtABD中,解直角三角形求出AB的长度;然后在RtABE中,解直角三角形求出AE的长度;最后利用DE=ADAE求得结果解答:(1)证明:BF是O的切线,3=C,ABF=ABC,即3=2,2=C,AB=AC;(2)解:如图,连接BD,在RtADB中,BAD=90,cosADB=,BD=5,AB=3在RtABE中,BAE=90,cosABE=,BE=,AE=,DE=ADAE=4=点评:此题考查了切线的性质、等腰三角形的判定与性质、勾股定理以及三角函数等知识此题难度适中,注

31、意掌握辅助线的作法,注意数形结合思想的应用26(10分)(2013扬州)如图,抛物线y=x22x8交y轴于点A,交x轴正半轴于点B(1)求直线AB对应的函数关系式;(2)有一宽度为1的直尺平行于x轴,在点A、B之间平行移动,直尺两长边所在直线被直线AB和抛物线截得两线段MN、PQ,设M点的横坐标为m,且0m3试比较线段MN与PQ的大小考点:二次函数综合题专题:计算题分析:(1)利用二次函数解析式,求出A、B两点的坐标,再利用待定系数法求出一次函数解析式;(2)根据M的横坐标和直尺的宽度,求出P的横坐标,再代入直线和抛物线解析式,求出MN、PQ的长度表达式,再比较即可解答:解:(1)当x=0时,

32、y=8;当y=0时,x22x8=0,解得,x1=4,x2=8;则A(0,8),B(4,0);设一次函数解析式为y=kx+b,将A(0,8),B(4,0)分别代入解析式得;解得,故一次函数解析式为y=2x8;(2)M点横坐标为m,则P点横坐标为(m+1);MN=(2m8)(m22m8)=2m8m2+2m8=m2+4m;PQ=2(m+1)8(m+1)22(m+1)8=m2+4m;MNPQ=(m2+4m)(m2+2m+3)=2m3;当2m3=0时,m=,即MNPQ=0,MN=PQ;当2m30时,m3,即MNPQ0,MNPQ;当2m30时,0m,即MNPQ0,MNPQ点评:本题考查了二次函数综合题型,

33、涉及待定系数法求一次函数解析式、二次函数与坐标轴的交点问题,同时需要分类讨论27(12分)(2013扬州)如图1,在梯形ABCD中,ABCD,B=90,AB=2,CD=1,BC=m,P为线段BC上的一动点,且和B、C不重合,连接PA,过P作PEPA交CD所在直线于E设BP=x,CE=y(1)求y与x的函数关系式;(2)若点P在线段BC上运动时,点E总在线段CD上,求m的取值范围;(3)如图2,若m=4,将PEC沿PE翻折至PEG位置,BAG=90,求BP长考点:四边形综合题分析:(1)证明ABPPCE,利用比例线段关系求出y与x的函数关系式;(2)根据(1)中求出的y与x的关系式,利用二次函数

34、性质,求出其最大值,列不等式确定m的取值范围;(3)根据翻折的性质及已知条件,构造直角三角形,利用勾股定理求出BP的长度解答中提供了三种解法,可认真体会解答:解:(1)APB+CPE=90,CEP+CPE=90,APB=CEP,又B=C=90,ABPPCE,即,y=x2+x(2)y=x2+x=(x)2+,当x=时,y取得最大值,最大值为点P在线段BC上运动时,点E总在线段CD上,1,解得mm的取值范围为:0m(3)由折叠可知,PG=PC,EG=EC,GPE=CPE,又GPE+APG=90,CPE+APB=90,APG=APBBAG=90,AGBC,GAP=APB,GAP=APG,AG=PG=P

35、C解法一:如解答图所示,分别延长CE、AG,交于点H,则易知ABCH为矩形,HE=CHCE=2y,GH=AHAG=4(4x)=x,在RtGHE中,由勾股定理得:GH2+HE2=GH2,即:x2+(2y)2=y2,化简得:x24y+4=0 由(1)可知,y=x2+x,这里m=4,y=x2+2x,代入式整理得:x28x+4=0,解得:x=或x=2,BP的长为或2解法二:如解答图所示,连接GCAGPC,AG=PC,四边形APCG为平行四边形,AP=CG易证ABPGNC,CN=BP=x过点G作GNPC于点N,则GH=2,PN=PCCN=42x在RtGPN中,由勾股定理得:PN2+GN2=PG2,即:(

36、42x)2+22=(4x)2,整理得:x28x+4=0,解得:x=或x=2,BP的长为或2解法三:过点A作AKPG于点K,APB=APG,AK=AB易证APBAPK,PK=BP=x,GK=PGPK=42x在RtAGK中,由勾股定理得:GK2+AK2=AG2,即:(42x)2+22=(4x)2,整理得:x28x+4=0,解得:x=或x=2,BP的长为或2点评:本题是代数几何综合题,考查了全等三角形、相似三角形、勾股定理、梯形、矩形、折叠、函数关系式、二次函数最值等知识点,所涉及考点众多,有一定的难度注意第(2)问中求m取值范围时二次函数性质的应用,以及第(3)问中构造直角三角形的方法28(12分

37、)(2013扬州)如果10b=n,那么b为n的劳格数,记为b=d(n),由定义可知:10b=n与b=d(n)所表示的b、n两个量之间的同一关系(1)根据劳格数的定义,填空:d(10)=1,d(102)=2;(2)劳格数有如下运算性质:若m、n为正数,则d(mn)=d(m)+d(n),d()=d(m)d(n)根据运算性质,填空:=3(a为正数),若d(2)=0.3010,则d(4)=0.6020,d(5)=0.6990,d(0.08)=1.097;(3)如表中与数x对应的劳格数d(x)有且只有两个是错误的,请找出错误的劳格数,说明理由并改正x1.5356891227d(x)3ab+c2aba+c

38、1+abc33a3c4a2b3b2c6a3b考点:整式的混合运算;反证法分析:(1)根据定义可知,d(10)和d(102)就是指10的指数,据此即可求解;(2)根据d(a3)=d(aaa)=d(a)+d(a)+d(a)即可求得的值;(3)通过9=32,27=33,可以判断d(3)是否正确,同理以依据5=102,假设d(5)正确,可以求得d(2)的值,即可通过d(8),d(12)作出判断解答:解:(1)1,2;(2)=3;利用计算器可得:100.30102,100.60204,100.69905,101.0970.08,故d(4)=0.6020,d(5)=0.6990,d(0.08)=1.097;(3)若d(3)2ab,则d(9)=2d(3)4a2b,d(27)=3d(3)6a3b,从而表中有三个劳格数是错误的,与题设矛盾,d(3)=2ab,若d(5)a+c,则d(2)=1d(5)1ac,d(8)=3d(2)33a3c,d(6)=d(3)+d(2)1+abc,表中也有三个劳格数是错误的,与题设矛盾d(6)=a+c表中只有d(1.5)和d(12)的值是错误的,应纠正为:d(1.5)=d(3)+d(5)1=3ab+c1,d(12)d(3)+2d(2)=2b2c点评:本题考查整式的运算,正确理解规定的新的运算法则是关键

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1