1、第五节椭圆 考纲传真1.了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用.2.掌握椭圆的定义、几何图形、标准方程及简单性质.3.理解数形结合思想.4.了解椭圆的简单应用1椭圆的定义(1)我们把平面内到两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的集合叫作椭圆这两定点F1,F2叫作椭圆的焦点,两个焦点F1,F2间的距离叫作椭圆的焦距(2)集合PM|MF1|MF2|2a,|F1F2|2c,其中a,c为常数且a0,c0.当2a|F1F2|时,M点的轨迹为椭圆;当2a|F1F2|时,M点的轨迹为线段F1F2;当2a0)的左焦点为F1(4,0),则m()A2B3 C4D9
2、B由左焦点为F1(4,0)知c4.又a5,25m216,解得m3或3.又m0,故m3.4(2016全国卷)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为()A. BC. DB如图,|OB|为椭圆中心到l的距离,则|OA|OF|AF|OB|,即bca,所以e.5椭圆1的左焦点为F,直线xm与椭圆相交于点A,B,当FAB的周长最大时,FAB的面积是_3直线xm过右焦点(1,0)时,FAB的周长最大,由椭圆定义知,其周长为4a8,即a2,此时,|AB|23,SFAB233.椭圆的定义与标准方程(1)如图851所示,一圆形纸片的圆心为O,F是圆内一定点,M是圆
3、周上一动点,把纸片折叠使M与F重合,然后抹平纸片,折痕为CD,设CD与OM交于点P,则点P的轨迹是()A椭圆B双曲线C抛物线 D圆图851 (2)设F1,F2分别是椭圆E:x21(0b|OF|.P点的轨迹是以O,F为焦点的椭圆(2)不妨设点A在第一象限,设半焦距为c,则F1(c,0),F2(c,0)AF2x轴,则A(c,b2)(其中c21b2,0b|F1F2|这一条件(2)当涉及到焦点三角形有关的计算或证明时,常利用勾股定理、正(余)弦定理、椭圆定义,但一定要注意|PF1|PF2|与|PF1|PF2|的整体代换2求椭圆标准方程的基本方法是待定系数法,具体过程是先定位,再定量,即首先确定焦点所在
4、的位置,然后再根据条件建立关于a,b的方程组,若焦点位置不确定,可把椭圆方程设为Ax2By21(A0,B0,AB)的形式变式训练1(1)已知F1,F2是椭圆C:1(ab0)的两个焦点,P为椭圆C上的一点,且.若PF1F2的面积为9,则b_.(2)已知F1(1,0),F2(1,0)是椭圆C的两个焦点,过F2且垂直于x轴的直线交C于A,B两点,且|AB|3,则C的方程为_.【导学号:66482394】(1)3(2)1(1)由定义,|PF1|PF2|2a,且,|PF1|2|PF2|2|F1F2|24c2,(|PF1|PF2|)22|PF1|PF2|4c2,2|PF1|PF2|4a24c24b2,|P
5、F1|PF2|2b2.SPF1F2|PF1|PF2|2b29,因此b3.(2)依题意,设椭圆C:1(ab0)过点F2(1,0)且垂直于x轴的直线被曲线C截得弦长|AB|3,点A必在椭圆上,1.又由c1,得1b2a2.由联立,得b23,a24.故所求椭圆C的方程为1.椭圆的几何性质(2016全国卷)已知O为坐标原点,F是椭圆C:1(ab0)的左焦点,A,B分别为C的左、右顶点P为C上一点,且PFx轴过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()A. B C DA法一:设点M(c,y0),OE的中点为N,则直线AM的斜率k,从而直线AM的方程为y(x
6、a),令x0,得点E的纵坐标yE.同理,OE的中点N的纵坐标yN.2yNyE,即2a2cac,e.法二:如图,设OE的中点为N,由题意知|AF|ac,|BF|ac,|OF|c,|OA|OB|a.PFy轴,.又,即,a3c,故e.规律方法1.与椭圆几何性质有关的问题要结合图形进行分析2求椭圆离心率的主要方法有:(1)直接求出a,c的值,利用离心率公式直接求解(2)列出含有a,b,c的齐次方程(或不等式),借助于b2a2c2消去b,转化为含有e的方程(或不等式)求解变式训练2(2015福建高考)已知椭圆E:1(ab0)的右焦点为F,短轴的一个端点为M,直线l:3x4y0交椭圆E于A,B两点若|AF
7、|BF|4,点M到直线l的距离不小于,则椭圆E的离心率的取值范围是()A. BC. DA根据椭圆的对称性及椭圆的定义可得A,B两点到椭圆左、右焦点的距离为4a2(|AF|BF|)8,所以a2.又d,所以1b2,所以e.因为1b2,所以0b0)的半焦距为c,原点O到经过两点(c,0),(0,b)的直线的距离为.图852(1)求椭圆E的离心率;(2)如图852,AB是圆M:(x2)2(y1)2的一条直径,若椭圆E经过A,B两点,求椭圆E的方程解(1)过点(c,0),(0,b)的直线方程为bxcybc0,则原点O到该直线的距离d,3分由dc,得a2b2 ,解得离心率. 5分(2)由(1)知,椭圆E的
8、方程为x24y24b2.依题意,圆心M(2,1)是线段AB的中点,且|AB|.易知,AB与x轴不垂直,设其方程为yk(x2)1,代入得(14k2)x28k(2k1)x4(2k1)24b20. 8分设A(x1,y1),B(x2,y2),则x1x2,x1x2.由x1x24,得4,解得k.从而x1x282b2. 10分于是|AB|x1x2|.由|AB|,得,解得b23.故椭圆E的方程为1. 12分角度2由位置关系研究直线的性质(2015全国卷)已知椭圆C:1(ab0)的离心率为,点(2,)在C上(1)求C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明
9、:直线OM的斜率与直线l的斜率的乘积为定值解(1)由题意有,1,解得a28,b24. 3分所以C的方程为1. 5分(2)证明:设直线l:ykxb(k0,b0),A(x1,y1),B(x2,y2),M(xM,yM). 7分将ykxb代入1,得(2k21)x24kbx2b280. 9分故xM,yMkxMb.于是直线OM的斜率kOM,即kOMk.所以直线OM的斜率与直线l的斜率的乘积为定值. 12分规律方法1.解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程解决相关问题涉及弦中点的问题常常用“点差法”解决,往往会更简单2设直线与椭
10、圆的交点坐标为A(x1,y1),B(x2,y2),则|AB|(k为直线斜率)思想与方法1椭圆的定义揭示了椭圆的本质属性,正确理解、掌握定义是关键,应注意定义中的常数大于|F1F2|,避免了动点轨迹是线段或不存在的情况2求椭圆方程的方法,除了直接根据定义外,常用待定系数法当椭圆的焦点位置不明确而无法确定其标准方程时,设方程为1(m0,n0,且mn)可以避免讨论和烦琐的计算,也可以设为Ax2By21(A0,B0,且AB),这种形式在解题中更简便3讨论椭圆的几何性质时,离心率问题是重点,常用方法:(1)求得a,c的值,直接代入公式e求得;(2)列出关于a,b,c的齐次方程(或不等式),然后根据b2a2c2,消去b,转化成关于e的方程(或不等式)求解易错与防范1判断两种标准方程的方法是比较标准形式中x2与y2的分母大小2注意椭圆的范围,在设椭圆1(ab0)上点的坐标为P(x,y)时,则|x|a,这往往在求与点P有关的最值问题中用到,也是容易被忽视而导致求最值错误的原因3椭圆上任意一点M到焦点F的最大距离为ac,最小距离为ac.