ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:314.98KB ,
资源ID:322488      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-322488-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《首发》广东省广州市重点学校备战2017高考高三数学一轮复习试题精选:圆锥曲线35 WORD版含解析.doc)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

《首发》广东省广州市重点学校备战2017高考高三数学一轮复习试题精选:圆锥曲线35 WORD版含解析.doc

1、欢迎广大教师踊跃来稿,稿酬丰厚。 qq:2355394557圆锥曲线3520. 已知椭圆的焦点坐标为(-1,0),(1,0),过垂直于长轴的直线交椭圆于P、Q两点,且|PQ|=3,(1) 求椭圆的方程;(2) 过的直线l与椭圆交于不同的两点M、N,则MN的内切圆的面积是否存在最大值?若存在求出这个最大值及此时的直线方程;若不存在,请说明理由.【答案】解:(1) 设椭圆方程为=1(ab0),由焦点坐标可得c=11分 由PQ|=3,可得=3,2分 解得a=2,b=,分故椭圆方程为=14分 则AB()=,9分令t=,则t1,则,10分令f(t)=3t+,则f(t) =3-,当t1时,f(t)0,f(

2、t)在1,+)上单调递增, 有f(t)f(1)=4, =3,即当t=1,m=0时,=3, =4R,=,这时所求内切圆面积的最大值为.故直线l:x=1,AMN内切圆面积的最大值为12分21.已知直线,,直线被圆截得的弦长与椭圆的短轴长相等,椭圆的离心率() 求椭圆的方程;() 过点(,)的动直线交椭圆于、两点,试问:在坐标平面上是否存在一个定点,使得无论如何转动,以为直径的圆恒过定点?若存在,求出点的坐标;若不存在,请说明理由 ()解法一:假设存在点T(u, v). 若直线l的斜率存在,设其方程为,将它代入椭圆方程,并整理,得 设点A、B的坐标分别为,则 因为及所以 当且仅当恒成立时,以AB为直

3、径的圆恒过定点T, 所以解得此时以AB为直径的圆恒过定点T(0,1). 当直线l的斜率不存在,l与y轴重合,以AB为直径的圆为也过点T(0,1).综上可知,在坐标平面上存在一个定点T(0,1),满足条件. 当直线l的斜率存在,设直线方程为,代入椭圆方程,并整理,得8分设点A、B的坐标为,则 因为, 所以,即以AB为直径的圆恒过定点T(0,1). 综上可知,在坐标平面上存在一个定点T(0,1)满足条件. 22.设椭圆的左、右焦点分别为,上顶点为,在轴负半轴上有一点,满足,且. ()求椭圆的离心率; ()D是过三点的圆上的点,D到直线的最大距离等于椭圆长轴的长,求椭圆的方程; ()在(2)的条件下

4、,过右焦点作斜率为的直线与椭圆交于两点,在轴上是否存在点使得以为邻边的平行四边形是菱形,如果存在,求出的取值范围,如果不存在,说明理由.()由(1)知得于是(,0), B,ABF的外接圆圆心为(,0),半径r=|FB|=,D到直线的最大距离等于,所以圆心到直线的距离为,所以,解得=2,c =1,b=, 所求椭圆方程为. -8分由已知条件知且 故存在满足题意的点P且的取值范围是 -12分23.已知椭圆、抛物线的焦点均在轴上,的中心和的顶点均为坐标原点,从每条曲线上各取两个点,将其坐标记录于表中:()求的标准方程;()请问是否存在直线同时满足条件:()过的焦点;()与交于不同两点、,且满足?若存在,求出直线的方程;若不存在,请说明理由()已知椭圆的左顶点为,过作两条互相垂直的弦、分别另交椭圆于、两点当直线的斜率变化时,直线是否过轴上的一定点,若过定点,请给出证明,并求出该定点坐标;若不过定点,请说明理由()容易验证直线的斜率不存在时,不满足题意;当直线斜率存在时,假设存在直线过抛物线焦点,设其方程为,与的交点坐标为,所以存在直线满足条件,且的方程为:或9分()设直线的斜率为,则:,:则化简得:此方程有一根为,同理可得11分则所以的直线方程为令,则.所以直线过轴上的一定点 14分欢迎广大教师踊跃来稿,稿酬丰厚。 qq:2355394557

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1