ImageVerifierCode 换一换
格式:PPT , 页数:24 ,大小:704.50KB ,
资源ID:320570      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-320570-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《随堂优化训练》2014年数学(人教A版)必修2课件:2.2.3 平面与平面平行的性质.ppt)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

《随堂优化训练》2014年数学(人教A版)必修2课件:2.2.3 平面与平面平行的性质.ppt

1、22.3平面与平面平行的性质【学习目标】1掌握平面与平面平行的性质定理及其应用2提高学生的空间想象能力、思维能力面面平行的性质定理文字语言如果两个平行平面同时和第三个平面_,那么它们的交线_符号语言图形语言作用线面平行_平面与平面平行的性质相交平行线线平行ab练习:下列命题中,真命题的个数有()C如果两个平面平行,那么分别在两个平面内存在直线 a,b,使 ab;如果两个平行平面同时和第三个平面相交,那么它们的交线平行;如果两个平面平行,那么第一个平面内的直线与第二个平面内的直线平行A0 个B1 个C2 个D3 个解析:真,假【问题探究】1如果两个平面平行,则一个平面内的任何一条直线与另外一个平

2、面平行吗?答案:平行2经过平面外一点,可以作几个平面和已知平面平行?答案:一个题型 1 面面平行的性质定理的应用【例 1】如图 2-2-11,已知四边形 ABCD 是直角梯形,ABC90,ADBC,AD2,ABBC1,PA平面ABCD.若 E,F 分别是 PA,AD 的中点,求证:平面 BEF平面 PCD.图 2-2-11证明:连接 BF,EF.如图 D24.图 D24因为 AD2,BC1,ADBC,所以 BCFD,且 BCFD.所以四边形 BCDF 是平行四边形,所以 BFCD.因为 BF 平面 PCD,所以 BF平面 PCD.因为 E,F 分别是 PA,AD 的中点,所以 EFPD.因为

3、EF 平面 PCD,所以 EF平面 PCD.因为 EFBFF,所以平面 BEF平面 PCD.要证明面面平行,先证一个平面内的两条相交直线与另一个平面平行.【变式与拓展】1a,b,c 为三条不重合的直线,为三个不重合的平面,直线均不在平面内,下面给出三个命题:其中正确的命题的序号是_题型 2 面面平行的判定定理与性质定理的综合应用图 2-2-12思维突破:解答本题应先对 AB,CD 是否共面进行讨论,当 AB,CD 不共面时需构造线段进行转化证明:当直线 AB 和 CD 在同一平面内时,由可知:ACBD,ABDC 是梯形或平行四边形又 BD,所以 EF平面.当直线 AB 和 CD 异面时,作 A

4、HCD 交于点 H,则四边形 AHDC 是平行四边形,作 FGDH 交 AH 于点 G,连接 EG,所以 EGBH.又 BH,所以 EG.又 FGDH,DH,所以 FG.所以平面 EFG,而 EF平面 EFG,所以 EF平面.将空间问题转化为平面问题,是解决立体几何问题的重要策略,关键在于选择或添加适当的平面或直线,并抓住一些平面图形的几何性质,如比例线段等此题通过巧作辅助线,得到所作平面与底面平行,由性质,ll易得线面平行,进而转化为面面平行,突出了平行问题中的转化思想【变式与拓展】2如图 2-2-13,在正三棱柱 ABC-A1B1C1 中,E,F,G 是侧面对角线上的点,且 BECFAG.

5、求证:平面 EFG平面 ABC.图 2-2-13证明:如图 D25,作 EPBB1 于点 P,连接 PF.在正三棱柱 ABC-A1B1C1 的侧面 ABB1A1 中,易知 A1B1BB1,图 D25又 EPBB1,EPA1B1AB.又BECF,A1BCB1.PFBC,则 PF平面 ABC.EPPFP,平面 PEF平面 ABC.EF平面 PEF,EF平面 ABC.同理 GF平面 ABC.EFGFF,平面 EFG平面 ABC.题型 3 线面、面面平行的综合应用【例 3】已知:有公共边 AB 的两个正方形 ABCD 和 ABEF不在同一平面内,P,Q 分别是对角线 AE,BD 上的点,且 APDQ,

6、求证:PQ平面 CBE.又 PQ 平面 BCE,EG平面 BCE,PQ平面 BCE.图 2-2-14证法二:如图 2-2-14(2),分别过点 P,Q 作 PKAB,QH AB,则 PKQH.CDAB,AEBD,PEBQ,PKQH.PQHK 是平行四边形PQKH.又 PQ 平面 BCE,KH 平面 BCE,PQ平面 BCE.证法三:如图 2-2-14(3),过点 P 作 POEB,连接 OQ,则 OQADBC,平面 POQ平面 BEC.又 PQ 平面 BCE,故 PQ平面 BEC.证明线面平行,关键是在平面内找到一条直线与已知直线平行,证法一是作三角形得到的;证法二是通过作平行四边形得到在平面

7、内的一条直线 KH;证法三利用了面面平行的性质定理【变式与拓展】3如图 2-2-15,在长方体 ABCD-A1B1C1D1 中,点 E,F是棱 C1D1,A1D1 的中点,求证:AF平面 BDE.图 2-2-15证法一:如图 D26,连接 EF,AC,ACBDG,显然四边形 EFAG 为平行四边形,图 D26又 AF 平面 BDE,EG平面 BDE,AF平面 BDE.证法二:取 A1B1 中点 G,连接 AG,FG,证明平面 AFG平面 BDE 即可【例 4】下列命题正确的是()A夹在两平行平面间的相等线段必平行B夹在两平行平面间的平行线段相等C第三平面与两平面分别相交,若两条交线平行,则这两平面平行D平行于同一直线的两平面平行易错分析:应注意面面平行性质定理的应用条件答案:B方法规律小结1面面平行的判定定理既是面面平行的性质定理,也是线面平行的判定定理,因此证明线面平行,也可借助于面面平行2利用两个平行平面的性质解题时,要注意常把面面平行的问题转化成线面平行或线线平行的问题(1)两个平面平行,可得其中一平面内的任一直线平行于另一个平面此性质定理可简记为:面面平行,则线面平行(2)两个平面平行,可得两个平面与第三个平面相交,它们的交线平行,而不是两个平面内的任意两条直线平行,此性质定理可简记为:面面平行,则线线平行

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1