ImageVerifierCode 换一换
格式:DOC , 页数:19 ,大小:1.30MB ,
资源ID:318128      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-318128-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《全国百强校》河南省郑州一中教育集团洛阳伊河学校2016届高三押题卷二文数试题解析(解析版)WORD版含解斩.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《全国百强校》河南省郑州一中教育集团洛阳伊河学校2016届高三押题卷二文数试题解析(解析版)WORD版含解斩.doc

1、河南省郑州一中教育集团洛阳伊河学校2016届高三押题卷二文数试题一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知是虚数单位,若复数()的实部与虚部相等,则( )A B C D 【答案】A考点:复数运算2.已知集合,若,则( )A B C或 D或【答案】D【解析】试题分析:由,集合,又,或,故选D考点:交集及其运算3.若函数是偶函数,则函数的图象的对称轴方程是( )111.ComA B C D【答案】A【解析】试题分析:函数向右平移个单位得出的图象,又是偶函数,对称轴方程为,的对称轴方程为.故选A考点:函数的对称性.4.已知平面

2、向量与的夹角为,且,则( )A B C D 【答案】C考点:平面向量数量积的运算5.执行如图所示的程序框图,若输入的的值为,则输出的的值为( )A17 B36 C52 D72【答案】D【解析】试题分析:根据程序框图可知,进入循环体后,循环次数、的值、的值的变化情况为:111.Com循环次数退出循环的值的值所以输出的的值为故选D考点:程序框图16.将函数(其中)的图象向右平移个单位长度,所得的图象经过点,则的最小值是( )A B C D 【答案】D考点:由的部分图象确定其解析式;函数的图象变换7.已知数列满足().若数列的最大项和最小项分别为和,则( )A B C D【答案】D【解析】试题分析:

3、数列,当时,,即;当时,即.因此数列先增后减,为最大项,,最小项为,的值为故选D.考点:数列的函数特性.8.若满足约束条件,则当取最大值时,的值为( )A B C D【答案】D考点:简单线性规划9.已知在平面直角坐标系中,点,().命题:若存在点在圆上,使得,则;命题:函数在区间内没有零点.下列命题为真命题的是( )A B C D【答案】A【解析】试题分析:命题:,则以为直径的圆必与圆有公共点,所以,解得,因此,命题是真命题.命题:函数,,且在上是连续不断的曲线,所以函数在区间内有零点,因此,命题是假命题.因此只有为真命题故选A考点:复合命题的真假【方法点晴】本题考查命题的真假判断,命题的“或

4、”、“且”及“非”的运算性质,同时也考查两圆的位置关系和函数零点存在定理,属于综合题.由于点满足,因此在以为直径的圆上,又点在圆上,因此为两圆的交点,利用圆心距介于两圆半径差与和之间,求出的范围.函数是单调函数,利用零点存在性定理判断出两端点异号,因此存在零点.10.一个多面体的直观图和三视图如图所示,点是边上的动点,记四面体的体积为,多面体的体积为,则( )1111A B C D不是定值,随点的变化而变化【答案】B考点:棱柱、棱锥、棱台的体积11.已知双曲线和离心率为的椭圆有相同的焦点,是两曲线的一个公共点,若,则双曲线的离心率等于( )A B C D【答案】C【解析】试题分析:设椭圆的长半

5、轴长为,双曲线的实半轴长为,焦距为,且不妨设,由,得,又,由余弦定理可知:,设双曲线的离心率为,则,解得.故答案选C考点:椭圆的简单性质【思路点晴】本题主要考查圆锥曲线的定义和离心率.根据椭圆和双曲线的定义,由为公共点,可把焦半径、的长度用椭圆的半长轴以及双曲线的半实轴来表示,接着用余弦定理表示,成为一个关于以及的齐次式,等式两边同时除以,即可求得离心率.圆锥曲线问题在选择填空中以考查定义和几何性质为主.12.已知定义域为的偶函数满足对任意的,有,且当时,.若函数在上至少有三个零点,则实数的取值范围是( )111A B C D【答案】B【解析】试题分析:,令,则,是定义在上的偶函数,则函数是定

6、义在上的,周期为的偶函数,又当时,令,则与在的部分图象如下图,在上至少有三个零点可化为与的图象在上至少有三个交点,在上单调递减,则,解得:故选A考点:根的存在性及根的个数判断.【方法点晴】本题是一道关于函数零点的题目,关键是结合数形结合的思想进行解答.根据已知条件推导可得是周期函数,其周期为,要使函数在上至少有三个零点,等价于函数的图象与函数的图象在上至少有三个交点,接下来在同一坐标系内作出图象,进而可得的范围.第卷(非选择题共90分)二、填空题(本大题共4小题,每题5分,满分20分)13.某高中共有学生1000名,其中高一年级共有学生380人,高二年级男生有180人.如果在全校学生中抽取1名

7、学生,抽到高二年级女生的概率为,先采用分层抽样(按年级分层)在全校抽取100人,则应在高三年级中抽取的人数等于 .【答案】考点:分层抽样方法14.设某双曲线与椭圆有共同的焦点,且与椭圆相交,其中一个交点的坐标为,则此双曲线的标准方程是 .【答案】【解析】试题分析:由题意可知椭圆的焦点在轴上,且,故焦点坐标为由双曲线的定义可得,故,故所求双曲线的标准方程为故答案为:考点:双曲线的简单性质;椭圆的简单性质15.在中,已知角的对边分别为,且,则角为 .【答案】考点:正弦定理【方法点晴】本题考查正余弦定理,根据正弦定理,将所给的含有边和角的等式化为只含有角的等式,再利用三角形的三角和是,消去多余的变量

8、,从而解出角.三角函数题目在高考中的难度逐渐增加,以考查三角函数的图象和性质,以及三角形中的正余弦定理为主,在年全国卷()中以选择题的压轴题出现.16.定义在上的函数满足:,则不等式(其中为自然对数的底数)的解集为 .【答案】考点:利用导数研究函数的单调性.【方法点晴】本题是一道利用导数判断单调性的题目,解答本题的关键是掌握导数的相关知识,首先对已知的不等式进行变形,可得,结合要求的不等式可知在不等式两边同时乘以,即,因此构造函数,求导利用函数的单调性解不等式.另外本题也可以构造满足前提的特殊函数,比如令也可以求解.1三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤

9、.)17.(本小题满分12分)已知等差数列满足:(),该数列的前三项分别加上1,1,3后成等比数列,且.(1)求数列,的通项公式;(2)求数列的前项和.【答案】(1),;(2).【解析】试题分析:(1)设为等差数列的公差,且,利用数列的前三项分别加上后成等比数列,求出,然后求解;(2)写出利用错位相减法求和即可试题解析:解:(1)设为等差数列的公差,由,分别加上后成等比数列,111.Com所以 ,又 ,即 (6分)考点:数列的求和18.(本小题满分12分)为了普及法律知识,达到“法在心中”的目的,某市法制办组织了普法知识竞赛.统计局调查队随机抽取了甲、乙两单位中各5名职工的成绩,成绩如下表:

10、甲单位8788919193乙单位8589919293(1)根据表中的数据,分别求出甲、乙两单位职工成绩的平均数和方差,并判断哪个单位对法律知识的掌握更稳定;(2)用简单随机抽样法从乙单位5名职工中抽取2名,他们的成绩组成一个样本,求抽取的2名职工的分数差至少是4的概率.【答案】(1),,甲单位对法律知识的掌握更稳定;(2).【解析】试题分析:(1)先求出甲乙两个单位职工的考试成绩的平均数,以及他们的方差,则方差小的更稳定;(2)从乙单位抽取两名职工的成绩,所有基本事件用列举法得到共种情况,抽取的两名职工的分数差至少是的事件用列举法求得共有种,由古典概型公式得出概率.试题解析:解:(1), ,甲

11、单位的成绩比乙单位稳定,即甲单位对法律知识的掌握更稳定. (6分)考点:1.平均数与方差公式;2.古典概型19.(本小题满分12分)如图所示,已知平面,平面,为等边三角形,,为的中点.(1)求证:平面;(2)平面平面.【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)推导出,,从而平面,连接,则三点共线,推导出,由线面垂直的判定定理得平面;(2)连接交于点,推导出,则是二面角的平面角由此能求出二面角的余弦值试题解析:(1)如图,取的中点,连接. 为的中点,且.平面,平面, , .又,. 四边形为平行四边形,则. (4分)平面,平面, 平面 (6分)考点:直线与平面平行和垂直的

12、判定20.(本小题满分12分)已知椭圆:的左、右焦点分别为,过点作垂直于轴的直线,直线垂直于点,线段的垂直平分线交于点.(1)求点的轨迹的方程;(2)过点作两条互相垂直的直线,且分别交椭圆于,求四边形面积的最小值.【答案】(1);(2).【解析】试题分析:(1)求得椭圆的焦点坐标,连接,由垂直平分线的性质可得,运用抛物线的定义,即可得到所求轨迹方程;(2)分类讨论:当或中的一条与轴垂直而另一条与轴重合时,此时四边形面积当直线和的斜率都存在时,不妨设直线的方程为,则直线的方程为分别与椭圆的方程联立得到根与系数的关系,利用弦长公式可得,利用四边形面积即可得到关于斜率的式子,再利用配方和二次函数的最

13、值求法,即可得出(2)当直线的斜率存在且不为零时,直线的斜率为,则直线的斜率为,直线的方程为,联立,得.111,.由于直线的斜率为,用代换上式中的。可得.,四边形的面积.由于,当且仅当,即时取得等号.易知,当直线的斜率不存在或斜率为零时,四边形的面积.综上,四边形面积的最小值为.考点:椭圆的简单性质1【思路点晴】求得椭圆的焦点坐标,由垂直平分线的性质可得,运用抛物线的定义,即可得所求的轨迹方程.第二问分类讨论,当或中的一条与轴垂直而另一条与轴重合时,四边形面积为.当直线和的斜率都存在时,分别设出的直线方程与椭圆联立得到根与系数的关系,利用弦长公式求得,从而利用四边形的面积公式求最值.21.(本

14、小题满分12分)已知函数,设,其中,.(1)若函数在区间上单调递增,求实数的取值范围; (2)记,求证:.【答案】(1).(2)证明见解析.试题解析:解:(1)函数,1111所以函数,函数在区间上单调递增,在区间上恒成立,所以在上恒成立.令,则,当时,实数的取值范围为.(2),令,则111.令,则,显然在区间上单调递减,在区间上单调递增,则,则,故.考点:利用导数研究函数的单调性;利用导数求闭区间上函数的最值【方法点晴】本题主要考查导数在解决函数问题中的应用.考查利用导数证明不等式成立.(1)利用导数的工具性求解实数的取值范围;(2)先写出具体函数,通过观察的解析式的形式,能够想到解析式里可能

15、存在完全平方式,所以试着构造完全平方式并放缩,所以只需证明放缩后的式子大于等于即可,从而对新函数求导判单调性求出最值证得成立.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.22.(本小题满分10分)选修4-1:几何证明选讲如图,直线与圆相切于点,是过点的割线,点是线段的中点.(1)证明:四点共圆;(2)证明:.【答案】(1)证明见解析;(2)证明见解析.1111试题解析:解:(1)是切线,是弦,即是等腰三角形又点是线段的中点, 是线段垂直平分线,即又由可知是线段的垂直平分线,与互相垂直且平分,四边形是正方形,则四点共圆. (5分)(2由割线定理

16、得,由(1)知是线段的垂直平分线,从而 (10分)考点:与圆有关的比例线段23.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线的参数方程为(为参数),过点的直线交曲线于两点. (1)将曲线的参数方程化为普通方程;(2)求的最值.【答案】(1).(2)的最大值为,最小值为.试题解析:解:(1)曲线的参数方程为(为参数),消去参数得曲线的普通方程为 (3分)(2)由题意知,直线的参数方程为(为参数),将代入得 (6分)设对应的参数分别为,则.的最大值为,最小值为. (10分)考点:参数方程化成普通方程24.(本小题满分10分)选修4-5:不等式选讲已知函数,.(1)解不等式;(2)对任意的实数,不等式恒成立,求实数的最小值.111【答案】(1)或;(2).试题解析:(1)由题意不等式可化为,当时,解得,即;当时,解得,即;当时,解得,即 (4分)综上所述,不等式的解集为或. (5分)(2)由不等式可得,分离参数,得,故实数的最小值是. (10分)考点:绝对值三角不等式;绝对值不等式的解法1

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3