ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:201KB ,
资源ID:317195      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-317195-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020-2021学年数学北师大版必修4教学教案:1-5-2 正弦函数的图像 (9) WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2020-2021学年数学北师大版必修4教学教案:1-5-2 正弦函数的图像 (9) WORD版含答案.doc

1、正弦函数的图象课题正弦函数的图象教学目标1.通过实验演示,让学生经历图象画法的过程及方法,通过对图象的感知,形成正弦曲线的初步认识,进而探索正弦曲线准确的作法,养成善于发现、善于探究的良好习惯.学会遇到新问题时善于调动所学过的知识,较好地运用新旧知识之间的联系,提高分析问题、解决问题的能力.2.通过本节学习,理解正弦函数图象的画法.借助图象变换,了解函数之间的内在联系.通过三角函数图象的三种画法:描点法、几何法、五点法,体会用“五点法”作图给我们学习带来的好处,并会熟练地画出一些较简单的函数图象.3.通过本节的学习,让学生体会数学中的图形美,体验善于动手操作、合作探究的学习方法带来的成功愉悦.

2、渗透由抽象到具体的思想,加深数形结合思想的认识,理解动与静的辩证关系,树立科学的辩证唯物主义观.教学重、难点教学重点:正弦函数的图象.教学难点:将单位圆中的正弦线通过平移转化为正弦函数图象上的点.教学准备多媒体课件教学过程导入新课从单位圆看正弦函数的性质,引导学生回顾单位圆中的正弦函数线.进而做出函数图形.通过以上操作,你对正弦函数的图象是否有了一个直观的印象?画函数的图象,最基本的方法是我们以前熟知的列表描点法,但不够精确.下面我们利用正弦线画出比较精确的正弦函数图象.提出问题 问题:作正弦函数图象的各点的纵坐标都是查三角函数表得到的数值,由于对一般角的三角函数值都是近似值,不易描出对应点的

3、精确位置.我们如何得到任意角的三角函数值并用线段长(或用有向线段数值)表示x角的三角函数值?怎样得到函数图象上点的两个坐标的准确数据呢?简单地说,就是如何得到的精确图象呢?问题:如何得到时的图象? 活动:教师先让学生阅读教材、思考讨论,对于程度较弱的学生,教师指导他们查阅课本上的正弦线.此处的难点在于为什么要用正弦线来作正弦函数的图象,怎样在x轴上标横坐标?为什么将单位圆分成12份?学生思考探索仍不得要领时,教师可进行适时的点拨.只要解决了的图象,就很容易得到时的图象了.对问题,第一步,可以想象把单位圆圆周剪开并12等分,再把x轴上从0到2这一段分成12等份.由于单位圆周长是2,这样就解决了横

4、坐标问题.过O1上的各分点作x轴的垂线,就可以得到对应于0、2等角的正弦线,这样就解决了纵坐标问题(相当于“列表”).第二步,把角x的正弦线向右平移,使它的起点与x轴上的点x重合,这就得到了函数对(x,y)(相当于“描点”).第三步,再把这些正弦线的终点用平滑曲线连接起来,我们就得到函数y=sinx在0,2上的一段光滑曲线(相当于“连线”).如图1所示(这一过程用课件演示,让学生仔细观察怎样平移和连线过程.然后让学生动手作图,形成对正弦函数图象的感知).这是本节的难点,教师要和学生共同探讨.图1对问题,因为终边相同的角有相同的三角函数值,所以函数y=sinx在x2k,2(k+1),kZ且k0上

5、的图象与函数y=sinx在x0,2上的图象的形状完全一致,只是位置不同.于是我们只要将函数y=sinx,x0,2的图象向左、右平行移动(每次2个单位长度),就可以得到正弦函数y=sinx,xR的图象.(这一过程用课件处理,让同学们仔细观察整个图的形成过程,感知周期性)图2讨论结果:利用正弦线,通过等分单位圆及平移即可得到y=sinx,x0,2的图象.左、右平移,每次2个长度单位即可.提出问题 问题:以上方法作图,虽然精确,但不太实用,自然我们想寻求快捷地画出正弦函数图象的方法.你认为哪些点是关键性的点?问题:你能确定余弦函数图象的关键点,并作出它在0,2上的图象吗? 活动:对问题,教师可引导学

6、生从图象的整体入手观察正弦函数的图象,发现在0,2上有五个点起关键作用,只要描出这五个点后,函数y=sinx在0,2上的图象的形状就基本上确定了.这五点如下:(0,0),(,1),(,0),(,-1),(2,0).因此,在精确度要求不太高时,我们常常先找出这五个关键点,然后用光滑的曲线将它们连接起来,就可快速得到函数的简图.这种近似的“五点(画图)法”是非常实用的,要求熟练掌握.对问题,引导学生通过类比,很容易确定在0,2上起关键作用的五个点,并指导学生通过描这五个点作出在0,2上的图象.讨论结果:略.关键点也有五个,它们是:(0,1),(,0),(,-1),(,0),(2,1).应用示例例1

7、画出下列函数的简图(1)y=1+sinx,x0,2. 活动:本例的目的是让学生在教师的指导下会用“五点法”画图,并通过独立完成课后练习1领悟画正弦、余弦函数图象的要领,最终达到熟练掌握.从实际教学来看,“五点法”画图易学却难掌握,学生需练好扎实的基本功.可先让学生按“列表、描点、连线”三步来完成.对学生出现的种种失误,教师不要着急,在学生操作中指导一一纠正,这对以后学习大有好处.解:(1)按五个关键点列表:x02sinx010来源:Zxxk.Com-101+sinx12101描点并将它们用光滑的曲线连接起来(图4).图4课堂小结以提问的方式,先由学生反思学习内容并回答,教师再作补充完善.1.怎样利用“周而复始”的特点,把区间0,2上的图象扩展到整个定义域的?2.如何画出正弦曲线?这节课学习了代数描点法、几何描点法之外.“五点法”作图是比较方便、实用的方法,应熟练掌握.数形结合思想、运动变化观点都是学习本课内容的重要思想方法.作业1.课本习题1.4 A组1.2.预习下一节:正弦函数的性质.板书设计教学反思

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3