ImageVerifierCode 换一换
格式:PPTX , 页数:34 ,大小:567.39KB ,
资源ID:31647      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-31647-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2016数学湘教版必修1课件:第一章 集合与函数 1-2-8 .pptx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2016数学湘教版必修1课件:第一章 集合与函数 1-2-8 .pptx

1、第1章 1.2 函数的概念和性质1.2.8 二次函数的图象和性质对称性学习目标 1.能说出奇函数和偶函数的定义.2.会判断具体函数的奇偶性.3.会分析二次函数图象的对称性.4.能求一个二次函数在闭区间上的最值.栏目索引 CONTENTS PAGE 1 预习导学 挑战自我,点点落实 2 课堂讲义 重点难点,个个击破 3 当堂检测 当堂训练,体验成功 4 1.2.8 二次函数的图象和性质对称性 预习导学 挑战自我,点点落实 知识链接 函数yx的图象关于对称,yx2的图象关于_对称.原点y轴5 1.2.8 二次函数的图象和性质对称性预习导引 1.函数的奇偶性(1)如果对一切使F(x)有定义的x,也有

2、定义,并且成立,则称F(x)为偶函数;(2)如果对一切使F(x)有定义的x,也有定义,并且成立,则称F(x)为奇函数.F(x)F(x)F(x)F(x)F(x)F(x)6 1.2.8 二次函数的图象和性质对称性2.二次函数图象的对称性(1)二次函数 f(x)ax2bxc(a0)的图象的对称轴是直线x b2a;(2)如果函数f(x)对任意的h都有,那么f(x)的图象关于直线xs对称.f(sh)f(sh)7 1.2.8 二次函数的图象和性质对称性 课堂讲义 重点难点,个个击破 要点一 函数奇偶性的判断例1 判断下列函数的奇偶性:(1)f(x)x3x;解 函数定义域为R,且f(x)(x)3(x)x3x

3、(x3x)f(x),所以该函数是奇函数;(2)f(x)|x2|x2|;解 函数定义域为R,且f(x)|x2|x2|x2|x2|f(x),所以该函数是偶函数;8 1.2.8 二次函数的图象和性质对称性(3)f(x)x2 x;解 函数定义域是x|x0,不关于原点对称,因此它是非奇非偶函数;(4)f(x)2x22xx1;解 函数定义域是x|x1,不关于原点对称,因此它是非奇非偶函数;9 1.2.8 二次函数的图象和性质对称性(5)f(x)x244x2.解 要使函数有意义,需满足x240,4x20,解得x2,即函数的定义域是2,2,这时f(x)0.所以f(x)f(x),f(x)f(x),因此该函数既是

4、奇函数又是偶函数.10 1.2.8 二次函数的图象和性质对称性规律方法 1.判断函数的奇偶性,一般有以下几种方法:(1)定义法:若函数定义域不关于原点对称,则函数为非奇非偶函数;若函数定义域关于原点对称,则应进一步判断f(x)是否等于f(x),或判断f(x)f(x)是否等于0,从而确定奇偶性.注意当解析式中含有参数时,要对参数进行分类讨论后再进行奇偶性的判定.(2)图象法:若函数图象关于原点对称,则函数为奇函数;若函数图象关于y轴对称,则函数为偶函数.11 1.2.8 二次函数的图象和性质对称性(3)还有如下性质可判定函数奇偶性:偶函数的和、差、积、商(分母不为零)仍为偶函数;奇函数的和、差仍

5、为奇函数;奇(偶)数个奇函数的积、商(分母不为零)为奇(偶)函数;一个奇函数与一个偶函数的积为奇函数.(注:利用以上结论时要注意各函数的定义域)2.判断函数奇偶性前,不宜盲目化简函数解析式,若必须化简,要在定义域的限制之下进行,否则很容易影响判断,得到错误结果.12 1.2.8 二次函数的图象和性质对称性跟踪演练1 判断下列函数的奇偶性:(1)f(x)2xx23;解 函数定义域为R,且 f(x)2xx232xx23f(x).故该函数是奇函数;13 1.2.8 二次函数的图象和性质对称性(2)f(x)x4x21;解 函数定义域为x|x1,关于原点对称,且 f(x)x4x21 x4x21f(x).

6、故f(x)是偶函数.14 1.2.8 二次函数的图象和性质对称性(3)f(x)(x21)x1.解 函数定义域是x|x1,不关于原点对称,所以是非奇非偶函数.15 1.2.8 二次函数的图象和性质对称性要点二 函数奇偶性的简单应用例2(1)设f(x)是定义在R上的奇函数,当x0时,f(x)2x2x,则f(1)等于()A.3B.1C.1D.3 解析 因为当x0时,f(x)2x2x,所以f(1)2(1)2(1)3.又f(x)是奇函数,所以f(1)f(1)3,选A.A 16 1.2.8 二次函数的图象和性质对称性(2)若函数f(x)x33xa是奇函数,则实数a_.解析 方法一 因为f(x)是奇函数,所

7、以f(x)f(x)对任意xR都成立,即x33xax33xa对任意xR都成立.所以a0.方法二 因为f(x)是奇函数且在x0处有定义.必有f(0)0,即0330a0,解得a0.0 17 1.2.8 二次函数的图象和性质对称性规律方法 1.利用奇偶性求值时,主要根据f(x)与f(x)的关系将未知转化为已知求解,若需要借助解析式求值,代入自变量值时,该自变量值必须在该解析式对应的区间上,否则不能代入求值,而应转化.2.已知函数是奇函数或偶函数,求解析式中参数值时,通常有两种方法:一是利用奇、偶函数的定义建立关于参数的方程求解,二是采用特殊值法,尤其是在x0处有定义的奇函数,还可根据f(0)0求解.1

8、8 1.2.8 二次函数的图象和性质对称性跟踪演练2(1)已知f(x)是偶函数,且f(4)5,那么f(4)f(4)的值为()A.5B.10C.8D.不确定 解析 f(x)是偶函数,f(4)f(4)f(4)f(4)2f(4)2510.B 19 1.2.8 二次函数的图象和性质对称性(2)若函数y(x1)(xa)为偶函数,则a等于()A.2B.1C.1D.2 解析 f(x)是偶函数,f(x)f(x)对任意xR都成立,即(x1)(xa)(x1)(xa).整理得2(a1)x0,xR,必有a10,即a1.C 20 1.2.8 二次函数的图象和性质对称性要点三 二次函数的区间最值问题例3 已知函数f(x)

9、x22ax2,x5,5.用a表示出函数f(x)在区间5,5上的最值.解 函数f(x)x22ax2(xa)22a2的图象开口向上,对称轴为xa.当a5,即a5时,函数在区间5,5上递增,所以f(x)maxf(5)2710a,f(x)minf(5)2710a;21 1.2.8 二次函数的图象和性质对称性当5a0,即0a5时,函数图象如图(1)所示.由图象可得f(x)minf(a)2a2,f(x)maxf(5)2710a;22 1.2.8 二次函数的图象和性质对称性当0a5,即5a0时,函数图象如图(2)所示,由图象可得f(x)maxf(5)2710a,f(x)minf(a)2a2;当a5,即a5时

10、,函数在区间5,5上递减,所以f(x)minf(5)2710a,f(x)maxf(5)2710a.23 1.2.8 二次函数的图象和性质对称性规律方法 1.对于定义域为R的二次函数,其最值和值域可通过配方法求解.2.若求二次函数在某闭(或开)区间(非R)内的最值或值域,则以对称轴是否在该区间内为依据分类讨论:(1)若对称轴不在所求区间内,则可根据单调性求值域;(2)若对称轴在所求区间内,则最大值和最小值可在区间的两个端点处或对称轴处取得,比较三个数所对应函数值的大小即可求出值域.24 1.2.8 二次函数的图象和性质对称性跟踪演练3 求函数f(x)x2mx6(m0)在区间0,2上的最大值.解

11、f(x)x2mx6(xm2)2m24 6,该函数曲线开口向下,对称轴为直线 xm2.(1)当m22,即 m4 时,f(x)在0,2上单调递增,其最大值为 f(2)22m.25 1.2.8 二次函数的图象和性质对称性(2)当 0m22,即4m0 时,f(x)在0,2上的最大值为 f(m2)m24 6.26 1.2.8 二次函数的图象和性质对称性 当堂检测 当堂训练,体验成功 1 2 3 41.下列函数为奇函数的是()A.y|x|B.y3x C.yD.yx24 1x解析 A项和D项中的函数为偶函数,B项中的函数是非奇非偶函数,选C.C 527 1.2.8 二次函数的图象和性质对称性1 2 3 42

12、.对于定义在R上的函数f(x),给出下列判断:(1)若f(2)f(2),则函数f(x)是偶函数;(2)若f(2)f(2),则函数f(x)不是偶函数;(3)若f(2)f(2),则函数f(x)不是奇函数.其中正确的判断的个数是()A.0 B.1C.2 D.3 528 1.2.8 二次函数的图象和性质对称性1 2 3 4解析(1)仅有f(2)f(2)不足以确定函数的奇偶性,不满足奇函数、偶函数定义中的“任意”,故(1)错误;(2)当f(2)f(2)时,该函数就一定不是偶函数,故(2)正确;(3)若f(2)f(2),则不能确定函数f(x)不是奇函数.如若f(x)0,xR,则f(2)f(2),但函数f(

13、x)0,xR既是奇函数又是偶函数,故(3)错误.答案 B 529 1.2.8 二次函数的图象和性质对称性1 2 3 43.函数 yx1x1()A.是奇函数B.既是奇函数又是偶函数 C.是偶函数D.是非奇非偶函数 解析 函数定义域是x|x1,不关于原点对称,是非奇非偶函数,选D.D 530 1.2.8 二次函数的图象和性质对称性1 2 3 44.函数 f(x)2x2x1 在区间1,2上的值域是()A.(,78 B.7,4C.7,78 D.4,78531 1.2.8 二次函数的图象和性质对称性1 2 3 4解析 由于 f(x)2x2x12(x14)278,而141,2,所以 f(x)最大值是 f(

14、14)78,最小值为 f(2)7,故值域为7,78,故选C.答案 C 532 1.2.8 二次函数的图象和性质对称性1 2 3545.如果定义在区间3a,5上的函数f(x)为偶函数,那么a_.解析 f(x)为区间3a,5上的偶函数,区间3a,5关于坐标原点对称,3a5,即a8.8 33 1.2.8 二次函数的图象和性质对称性课堂小结1.在奇函数与偶函数的定义域中,都要求xD,xD,这就是说,一个函数不论是奇函数还是偶函数,它的定义域都一定关于坐标原点对称.如果一个函数的定义域关于坐标原点不对称,那么这个函数就失去了作为奇函数或偶函数的条件.2.解题中可以灵活运用f(x)f(x)0对奇偶性作出判断.34 1.2.8 二次函数的图象和性质对称性3.奇函数f(x)若在x0处有意义,则必有f(0)0.4.奇函数、偶函数的图象特点反映了数和形的统一性.5.抛物线yax2bxc(a0)的对称轴是直线x,开口方向由a确定,和x轴的位置关系由判别式b24ac确定.b2a

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3