ImageVerifierCode 换一换
格式:DOCX , 页数:7 ,大小:104.10KB ,
资源ID:31547      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-31547-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2015届高考数学二轮复习检测:专题7.38 圆锥曲线中的探索性问题.docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2015届高考数学二轮复习检测:专题7.38 圆锥曲线中的探索性问题.docx

1、专题7.38 圆锥曲线中的探索性问题1在平面直角坐标系xOy中,经过点(0,)且斜率为k的直线l与椭圆y21有两个不同的交点P和Q.(1)求k的取值范围;(2)设椭圆与x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数k,使得向量与共线?如果存在,求k值;如果不存在,请说明理由解(1)由已知条件,得直线l的方程为ykx,代入椭圆方程得(kx)21.整理得(k2)x22kx10.直线l与椭圆有两个不同的交点P和Q等价于8k24(k2)4k220,解得k.即k的取值范围为(,)(,)(2)设P(x1,y1),Q(x2,y2),则(x1x2,y1y2),由方程,得x1x2.又y1y2k(x1x2

2、)2.而A(,0),B(0,1),(,1)所以与共线等价于x1x2(y1y2),将代入上式,解得k.由(1)知k,故不存在符合题意的常数k.2已知双曲线方程为x21,问:是否存在过点M(1,1)的直线l,使得直线与双曲线交于P、Q两点,且M是线段PQ的中点?如果存在,求出直线的方程,如果不存在,请说明理由解显然x1不满足条件,设l:y1k(x1)联立y1k(x1)和x21,消去y得(2k2)x2(2k22k)xk22k30,由0,得k,x1x2,由M(1,1)为PQ的中点,得1,解得k2,这与k0)过M(2,),N(,1)两点,O为坐标原点(1)求椭圆E的方程;(2)是否存在圆心在原点的圆,使

3、得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,并求|AB|的取值范围;若不存在,请说明理由解(1)因为椭圆E:1(a,b0)过M(2,),N(,1)两点,所以解得所以椭圆E的方程为1.(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且,设该圆的切线方程为ykxm,A(x1,y1),B(x2,y2),解方程组得x22(kxm)28,即(12k2)x24kmx2m280,则16k2m24(12k2)(2m28)8(8k2m24)0,即8k2m240.故y1y2(kx1m)(kx2m)k2x1x2km(x1x2)m2m2.要使,需使x1x

4、2y1y20,即0,所以3m28k280,所以k20.又8k2m240,所以所以m2,即m或m,因为直线ykxm为圆心在原点的圆的一条切线,所以圆的半径为r,r2,r,所求的圆为x2y2,此时圆的切线ykxm都满足m或m,而当切线的斜率不存在时切线为x与椭圆1的两个交点为(,)或(,)满足,综上,存在圆心在原点的圆x2y2,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且.4(2014重庆)如图,设椭圆1(ab0)的左、右焦点分别为F1、F2,点D在椭圆上,DF1F1F2,2,DF1F2的面积为.(1)求该椭圆的标准方程(2)是否存在圆心在y轴上的圆,使圆在x轴的上方与椭圆有两个交点,且圆

5、在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由解(1)设F1(c,0),F2(c,0),其中c2a2b2.由2,得|DF1|c,从而SDF1F2|DF1|F1F2|c2,故c1,从而|DF1|.由DF1F1F2,得|DF2|2|DF1|2|F1F2|2,因此|DF2|.所以2a|DF1|DF2|2,故a,b2a2c21.因此,所求椭圆的标准方程为y21.(2)如图,设圆心在y轴上的圆C与椭圆y21相交,P1(x1,y1),P2(x2,y2)是两个交点,y10,y20,F1P1,F2P2是圆C的切线,且F1P1F2P2.由圆和椭圆的对称性,易知,x

6、2x1,y1y2.由(1)知F1(1,0),F2(1,0),所以(x11,y1),(x11,y1),再由F1P1F2P2,得(x11)2y0.由椭圆方程得1(x11)2,即3x4x10,解得x1或x10.当x10时,P1,P2重合,题设要求的圆不存在当x1时,过P1,P2分别与F1P1,F2P2垂直的直线的交点即为圆心C.设C(0,y0),由CP1F1P1,得1.而求得y1,故y0.圆C的半径|CP1| .综上,存在满足题设条件的圆,其方程为x2(y)2.5(2014江西)如图,已知抛物线C:x24y,过点M(0,2)任作一直线与C相交于A,B两点,过点B作y轴的平行线与直线AO相交于点D(O

7、为坐标原点)(1)证明:动点D在定直线上;(2)作C的任意一条切线l(不含x轴),与直线y2相交于点N1,与(1)中的定直线相交于点N2,证明:|MN2|2|MN1|2为定值,并求此定值(1)证明依题意可设AB方程为ykx2,代入x24y,得x24(kx2),即x24kx80.设A(x1,y1),B(x2,y2),则有x1x28.直线AO的方程为yx;BD的方程为xx2.解得交点D的坐标为注意到x1x28及x4y1,则有y2.因此动点D在定直线y2上(x0)(2)解依题设,切线l的斜率存在且不等于0,设切线l的方程为yaxb(a0),代入x24y得x24(axb),即x24ax4b0.由0得(

8、4a)216b0,化简整理得ba2.故切线l的方程可写为yaxa2.分别令y2,y2得N1,N2的坐标为N1(a,2),N2(a,2),则|MN2|2|MN1|2(a)242(a)28,即|MN2|2|MN1|2为定值8.6(2014福建)已知曲线上的点到点F(0,1)的距离比它到直线y3的距离小2.(1)求曲线的方程(2)曲线在点P处的切线l与x轴交于点A,直线y3分别与直线l及y轴交于点M,N.以MN为直径作圆C,过点A作圆C的切线,切点为B.试探究:当点P在曲线上运动(点P与原点不重合)时,线段AB的长度是否发生变化?证明你的结论解方法一(1)设S(x,y)为曲线上任意一点,依题意,点S

9、到F(0,1)的距离与它到直线y1的距离相等,所以曲线是以点F(0,1)为焦点、直线y1为准线的抛物线,所以曲线的方程为x24y.(2)当点P在曲线上运动时,线段AB的长度不变证明如下:由(1)知抛物线的方程为yx2,设P(x0,y0)(x00),则y0x,由yx,得切线l的斜率ky|xx0x0,所以切线l的方程为yy0x0(xx0),即yx0xx.由得A(x0,0)由得M(x0,3)又N(0,3),所以圆心C(x0,3),半径r|MN|x0|,|AB| .所以点P在曲线上运动时,线段AB的长度不变方法二(1)设S(x,y)为曲线上任意一点,则|y(3)|2,依题意,点S(x,y)只能在直线y3的上方,所以y3,所以y1,化简,得曲线的方程为x24y.(2)同方法一

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3