ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:276.50KB ,
资源ID:311418      下载积分:9 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-311418-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020-2021学年数学人教A版必修4教学教案:3-1-2 两角和与差的正弦、余弦、正切公式 (2) WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2020-2021学年数学人教A版必修4教学教案:3-1-2 两角和与差的正弦、余弦、正切公式 (2) WORD版含答案.doc

1、两角和与差的余弦公式教案一【教学目标】1.知识目标: 理解两角和与差的余弦公式的推导过程,熟记两角和与差的余弦公式,运用两角和与差的余弦公式,解决相关数学问题。2能力目标 : 培养学生严密而准确的数学表达能力;培养学生逆向思维和发散思维能力;培养学生的观察能力,逻辑推理能力和合作学习能力。3.情感价值观目标: 通过观察、对比体会数学的对称美和谐美,培养学生良好的数学表达和思考的能力,学会从已有知识出发主动探索未知世界的意识及对待新知识的良好情感态度。 二【教学重点】 两角和与差的余弦公式的理解与灵活运用。三【教学难点】 两角和与差的余弦公式的推导过程,特别是角的任意性。四【突破措施】 先由特殊

2、情形引入再向一般性过渡,充分挖掘学生的思考和探究能力,以达到对公式的深入理解和灵活运用。五【教材分析】 这节内容是教材必修4的第三章三角恒等变换第一节,是高考的重点考点,历年高考必考内容,一般在填空或解答题第15题出现。教材在学生掌握了任意角的三角函数的概念、向量的坐标表示以及向量数量积的坐标表示的基础上,进一步研究用单角的三角函数表示的两角和与差的三角函数“两角差的余弦公式”在教科书中采用了一种易于教学的推导方法,即先借助于单位圆中的三角函数线,推出,均为锐角时成立对于,为任意角的情况,教材运用向量的知识进行了探究同时,补充了用向量的方法推导过程中的不严谨之处,这样,两角差的余弦公式便具有了

3、一般性。六【学情分析】 本课时面对的学生是高一年级的学生,数学表达能力和逻辑推理能力正处于高度发展的时期,学生对探索未知世界有主动意识,对新知识充满探求的渴望。他们经过半个多学期的高中生活,储备了一定的数学知识,掌握了一些高中数学的学习方法,这为本节课的学习建立了良好的知识基础。 七【学法设计】 师生合作交流探究,分组讨论一、 产生对公式的需求 引入新课 (1分钟)首先让学生通过具体实例消除对“cos(-)=cos-cos”的误解,说明两角和(差)的三角函数不能按分配律展开。并鼓励同学对公式结构的可能情况进行大胆猜想和尝试性探索。 二、自主探究 引发思考 层层深入 得出结论 (8分钟) 独立思

4、考以下问题: (1)向量的数量积 则 (2)单位圆上的点的坐标表示由图可知:( ) , ( )则 问题1 : 问题2 :由出发,你能推广到对任意的两个角都成立吗?问题3 :两角和与差的余弦公式推导 (一)两角差的余弦公式设如果,那么故 实际上,当为任意角时,由诱导公式总可以找到一个角都可转化,使。综上所述, ,对于任意的角都成立。根据两角差的余弦公式,你可以猜猜提示:令 (二)两角和的余弦公式(学生回答) 结论: 注: 1.公式中两边的符号正好相反(一正一负);2.式子右边同名三角函数相乘再加减,且余弦在前正弦在后;3.式子中、是任意的。4 式子的逆用,变形用正因为、的任意性,所以赋予C(+)

5、公式的强大生命力三 互相交流,小组活动 公式应用闯关 (12分钟)例一、请用特殊角分别代替公式中、,你能求哪些非特殊角的值呢?(选择的特殊角可以是306045等) (1) ;(2) ;(3) ;问题预测:学生动笔自由尝试、主动探索。有的同学说会求cos15、cos75、cos105、cos(-15)、cos165的值。甚至可能有的同学会说他验证了cos30=sin60.(让同学感受获得公式后的第一份喜悦)由于初学公式的应用,我选择其中之一作示范。例二、倘若让你对C()公式中的、自由赋值,你又将发现什么结论呢? (1);(2) (3)(4)问题预测:可能有的同学发现cos2=cos(+)=cos

6、2-sin2,这是以后要学的二倍角公式,还有的同学发现: cos=cos(+)-=cos(+)cos+sin(+)sin,甚至有调皮的同学发现cos0=cos(-)=cos2+sin2=1,这就无意中证明了平方关系, (据此,让同学感受到C()公式的强大功能)。(必要时,教师可适当提示)。注:按课本编排未必能让同学注意公式中,的任意性,(而正是因、的任意性,所以才赋予C(+)公式的强大生命力)。于是我设计上述三个有层次的A ,B,C级的问题,留时间先让同学用特殊角自由赋值,逐渐摸索、尝试,不断总结、归纳。这样更能使同学亲自感受公式的强大功能,并掌握赋值法。四师生共同活动 数学运用 (10分钟)

7、1.例题:知,求的值。解:由 ,得又由,得 由余弦的和角公式得 注意:注意角、的象限,也就是符号问题.2.变式练习 能力提高 解:由 ,得又由,则得 由余弦得差角公式得 五达标检测: (9分钟)(1) cos80cos20+sin80sin20,初步学会逆用公式。(2) cos130cos5-sin130sin5(3) cos215-sin215, 为二倍角公式埋下伏笔。(4) cos80cos35+cos10cos55,逐步学会把不符合公式结构变形使之符合。平面内两点间的距离公式C (+)C (-)以-代求cos15等赋值诱导公式及其它、任意角六学习反思 (2分钟)知识网建构:七 课时总结: (3分钟)1、牢记公式的结构特点,学会逆用公式。不符合公式结构特点的,常通过诱导公式变形使之符合。2、强调公式中、的任意性,是本节内容的主线,它赋予了公式的强大生命力。八 作业布置1. 教材第94页,感受理解第 1,2. 3 题2. 探究:知道了,你觉得也有类似的规律吗?九 板书设计 课题:3.1.1两角和与差的余弦两角差的余弦公式 两角和的余弦公式例题变式练习十 教后反思: 公式中、的任意性,是本节内容的主线,它赋予了公式的强大生命力。逆用公式是学生认识和掌握公式的重要标志。

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3