ImageVerifierCode 换一换
格式:DOC , 页数:17 ,大小:739KB ,
资源ID:309475      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-309475-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(广东省中山市第一中学2017-2018学年高二下学期第二次段考数学(理)试题 WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

广东省中山市第一中学2017-2018学年高二下学期第二次段考数学(理)试题 WORD版含答案.doc

1、中山市第一中学2017-2018学年高二年级第二次统测理科数学试卷命题人: 审题人:一、选择题(本大题共12小题,共60分)1下列说法正确的是( )A由归纳推理得到的结论一定正确B由类比推理得到的结论一定正确C由合情推理得到的结论一定正确D 演绎推理在前提和推理形式都正确的前提下,得到的结论一定正确2黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案,则第n个图案中有白色地面砖的块数是( )A BCD3已知在复平面内对应的点在第四象限,则实数m的取值范围是( )A BC D4用反证法证明命题“已知a、b、c为非零实数,且,求证a、b、c中至少有二个为正数”时,要做的假设是( )Aa、b、c

2、中至少有二个为负数Ba、b、c中至多有一个为负数Ca、b、c中至多有二个为正数Da、b、c中至多有二个为负数5设X是一个离散型随机变量,其分布列为: X01P则q等于A 1BCD6若,且,则等于A BCD7如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为 A 24B18C12D98设,则的值是A 665B729C728D639如图,由曲线,直线和x轴围成的封闭图形的面积是A B C D10已知函数,则A BeCD111一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停

3、止,设停止时共取了次球,则等于A BCD12若函数在上是单调函数,则a的取值范围是来源:学科网AB CD二、填空题(本大题共4小题,共20分)13用红、黄、蓝、绿、黑5种颜色给如图的a、b、c、d四个区域染色,若相邻的区域不能用相同的颜色,不同的染色方法的种数有_ 种14已知复数z满,则 _ 15已知函数的图象如图所示,则不等式的解集为_16 三、解答题(本大题共7小题,共70分)(一)必做题17(本题满分为12分)某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的概率为现有10件产品,其中6件是一等品,4件是二等品(1)随机选取1件产品,求能够通过检测的概

4、率;(2)随机选取3件产品,其中一等品的件数记为X,求X的分布列18(本题满分为12分)某单位为了了解用电量y度与气温之间的关系,随机统计了某4天的用电量与当天气温 气温141286用电量度22263438(I)求线性回归方程;(参考数据:,)(II)根据(I)的回归方程估计当气温为时的用电量附:回归直线的斜率和截距的最小二乘法估计公式分别为:,19(本题满分为12分)已知,()(1)求并由此猜想数列的通项公式的表达式;(2)用数学归纳法证明你的猜想20(本题满分为12分)已知的展开式中,某一项的系数是它前一项系数的2倍,而等于它后一项的系数的(1)求该展开式中二项式系数最大的项;(2)求展开

5、式中系数最大的项21(本题满分为12分)设函数,记(I)求曲线在处的切线方程;(II)求函数的单调区间;(III)当时,若函数没有零点,求a的取值范围(二)选做题(请考生从给出的22、23两题中任选一题作答,并用2B铅笔在答题卡上把所选的题号涂黑,注意所做题目必须与所涂题号一致,如果多做,则按所做的第一题计分。)22(本题满分为10分)已知直线l的参数方程为(为参数),以原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为(1)求直线l的普通方程及曲线C的直角坐标方程;(2)设直线l与曲线C交于两点,求23(本题满分为10分)求证:(1);(2)中山市第一中学2017-2018学

6、年高二年级第二次统测理科数学参考答案【答案】1 D2 A3 A4 A5 C6 A7 B8 A9 D10 C11 B12 B13 180 14 15 16 17 解:设随机选取一件产品,能够通过检测的事件为A,事件A包括两种情况,一是抽到的是一个一等品,二是抽到的是一个二等品,这两种情况是互斥的,事件“选取一等品都通过检测或者是选取二等品通过检测”;由题可知X可能取值为,的分布列是:18 解: 把代入回归方程得,解得回归方程为;当时,估计当气温为时的用电量为30度19 解:因为 所以 由此猜想数列的通项公式 下面用数学归纳法证明当时,猜想成立假设当时,猜想成立,即 那么来源:学科网即当时,猜想也

7、成立;综合可知,对猜想都成立,即20 解:第项系数为,第r项系数为,第项系数为依题意得到,即,解得,所以二项式系数最大的项是第4项和第5项所以设第项的系数最大,则 解得 又因为,所以 展开式中系数最大的项为21 解:,则函数在处的切线的斜率为又,所以函数在处的切线方程为,即当时,在区间上单调递增;当时,令,解得;令,解得综上所述,当时,函数的增区间是;当时,函数的增区间是,减区间是依题意,函数没有零点,即无解由知,当时,函数在区间上为增函数,区间上为减函数,由于,只需,解得所以实数a的取值范围为22 解:直线l的参数方程为为参数,消去t得到:,即:曲线C的极坐标方程为转化为:,整理得:将l的参

8、数方程为参数,代入曲线C:,整理得:,所以:,则:23 证明:,;要证,只要证,只要证,只要证,只要证,显然成立,故中山市第一中学2017-2018学年高二年级第二次统测理科数学解析1 解:所谓归纳推理,就是从个别性知识推出一般性结论的推理由归纳推理得到的结论不一定正确,A、C错;类比推理是根据两个或两类对象有部分属性相同,从而推出它们的其他属性也相同的推理由类比推理得到的结论不一定正确,故B错;演绎推理一般模式是“三段论”形式,即大前提小前提和结论,在大前提、小前提和推理形式都正确的情况下,得到的结论一定正确,故D正确,综上可知有D是正确的,故选D本题解决的关键是了解归纳推理、演绎推理和类比

9、推理的概念及它们间的区别与联系演绎推理是由一般到特殊的推理,是一种必然性的推理,演绎推理得到的结论不一定是正确的,这要取决与前提是否真实和推理的形式是否正确,演绎推理一般模式是“三段论”形式,即大前提小前提和结论本题主要考查推理的含义与作用所谓归纳推理,就是从个别性知识推出一般性结论的推理演绎推理可以从一般到一般;类比推理是根据两个或两类对象有部分属性相同,从而推出它们的其他属性也相同的推理来源:学科网ZXXK2 本题考查的是归纳推理,处理的方法是,由已知的图案中分析出白色地面砖的块数与图形序号n之间的关系,并由此猜想数列的通项公式,解答问题归纳推理的一般步骤是:通过观察个别情况发现某些相同性

10、质;从已知的相同性质中推出一个明确表达的一般性命题猜想【解答】解:观察可知:除第一个以外,每增加一个黑色地板砖,相应的白地板砖就增加四个,因此第n个图案中有白色地面砖的块数是一个“以6为首项,公差是4的等差数列的第n项”故第n个图案中有白色地面砖的块数是,故选A3 解:在复平面内对应的点在第四象限,可得:,解得故选:A利用复数对应点所在象限,列出不等式组求解即可本题考查复数的几何意义,考查计算能力4 解:用反证法证明某命题时,应先假设命题的否定成立,而:“a、b、c中至少有二个为正数”的否定为:“a、b、c中至少有二个为负数”故选A用反证法证明某命题时,应先假设命题的否定成立,而命题的否定为:

11、“a、b、c中至少有二个为负数”,由此得出结论本题主要考查用反证法证明数学命题,把要证的结论进行否定,得到要证的结论的反面,是解题的关键5 解:由题意可得,可得,解得舍去故选:C利用分布列概率和为1,列出方程求解即可本题考查离散性随机变量的分布列的应用,考查转化思想以及计算能力6 【分析】本题考查正态分布,考查求概率,解题的关键是确定曲线的对称轴为,利用对称性解题根据随机变量,可得曲线的对称轴为,利用对称性,即可求得【解答】解:随机变量,曲线的对称轴为,故选A7 解:从E到F,每条东西向的街道被分成2段,每条南北向的街道被分成2段,从E到F最短的走法,无论怎样走,一定包括4段,其中2段方向相同

12、,另2段方向相同,每种最短走法,即是从4段中选出2段走东向的,选出2段走北向的,故共有种走法同理从F到G,最短的走法,有种走法小明到老年公寓可以选择的最短路径条数为种走法故选:B从E到F最短的走法,无论怎样走,一定包括4段,其中2段方向相同,另2段方向相同,每种最短走法,即是从4段中选出2段走东向的,选出2段走北向的,由组合数可得最短的走法,同理从F到G,最短的走法,有种走法,利用乘法原理可得结论本题考查排列组合的简单应用,得出组成矩形的条件和最短走法是解决问题的关键,属基础题8 解:,由二项式定理可知均为正数,均为负数,令可得:时,故选:A由二项式定理可知均为正数,均为负数,可得,把代入已知

13、式子计数可得结果本题考查二项式定理,赋值法的应用,考查计算能力,属基础题9 解:由曲线,直线和x轴围成的封闭图形的面积为 故选D,直线和x轴围成的封闭图形,然后利用定积分表示区域面积,然后利用定积分的定义进行求解即可本题主要考查了利用定积分求面积,同时考查了定积分的等价转化,属于中档题10 解:求导得:,把代入得:,解得:,故选:C利用求导法则求出的导函数,把代入导函数中得到关于的方程,求出方程的解即可得到的值本题要求学生掌握求导法则学生在求的导函数时注意是一个常数,这是本题的易错点11 解:根据题意,表示第12次为红球,则前11次中有9次为红球,从而,故选B根据题意,表示第12次为红球,则前

14、11次中有9次为红球,由n次独立重复事件恰好发生k次的概率,计算可得答案本题考查n次独立重复事件恰好发生k次的概率,解本题须认真分析的意义12 解:由题意得,因为在上是单调函数,所以或在上恒成立,当时,则在上恒成立,即,设,因为,所以,当时,取到最大值是:0,所以,当时,则在上恒成立,即,设,因为,所以,当时,取到最小值是:,所以,综上可得,或,所以数a的取值范围是,故选:B由求导公式和法则求出,由条件和导数与函数单调性的关系分类讨论,分别列出不等式进行分离常数,再构造函数后,利用整体思想和二次函数的性质求出函数的最值,可得a的取值范围本题查求导公式和法则,导数与函数单调性的关系,以及恒成立问

15、题的转化,考查分离常数法,整体思想、分类讨论思想,属于中档题13 解:由题意,由于规定一个区域只涂一种颜色,相邻的区域颜色不同,可分步进行,区域a有5种涂法,b有4种涂法,c有3种,d有3种涂法共有种不同的染色方法故答案为:180由于规定一个区域只涂一种颜色,相邻的区域颜色不同,可分步进行,区域a有5种涂法,b有4种涂法,c有3种,d有3种涂法,根据乘法原理可得结论本题以实际问题为载体,考查计数原理的运用,关键搞清是分类,还是分步14 解:由,得,设,由,得,即,解得:则故答案为:设,代入,由复数相等的条件列式求得的值得答案本题考查复数代数形式的乘除运算,考查了复数相等的条件以及复数模的求法,

16、是基础题15 【分析】由函数的图象可得函数的单调性,根据单调性与导数的关系得导数的符号,进而得不等式的解集本题考查导数与函数单调性的关系,考查学生的识图能力,利用导数求函数的单调性是重点【解答】解:由图象特征可得,在上大于0,在上小于0,或或,的解集为故答案为16 解:令,则 故答案为:令,则,从而,由此能求出结果本题考查定积分的求法,是中档题,解题时要认真审题,注意换元法的合理运用17 本题考查离散型随机变量的分布列,考查等可能事件的概率,考查独立重复试验的概率公式,本题是一个概率的综合题目设随机选取一件产品,能够通过检测的事件为A,事件A包括两种情况,一是抽到的是一个一等品,二是抽到的是一

17、个二等品,这两种情况是互斥的,根据互斥事件的概率公式得到结果由题意知X的可能取值是,结合变量对应的事件和等可能事件的概率,写出变量的概率,写出分布列18 求出的均值,再由公式,计算出系数的值,即可求出线性回归方程;代入线性回归方程,计算出y的值,即为当气温为时的用电量本题考查了线性回归方程过数据中心的特点,属于基础题19 由,分别令,即可得出;由猜想:利用数学归纳法证明即可本题考查了数学归纳法、递推公式、数列的通项公式,考查了猜想归纳能力与计算能力,属于中档题20 利用二项展开式的通项公式求出第项,第r项,第项的系数,根据已知条件列出方程组,求出n的值,得到二项式系数最大的项是第4项和第5项,

18、利用二项展开式的通项公式求出它们的值设第项的系数最大,列出不等式组,求出r的值,代入二项展开式的通项公式求出展开式中系数最大的项本题考查解决二项展开式的特定项问题,应该利用的工具是二项展开式的通项公式,属于中档题21 求函数的导数,利用导数的几何意义,即可求曲线在处的切线方程;求函数的导数,利用函数导数和单调性之间的关系即可求函数的单调区间;根据函数没有零点,转化为对应方程无解,即可得到结论本题主要考查导数的几何意义,以及函数的单调性和导数之间的关系,考查学生的运算能力22 直接把参数方程和极坐标方程转换为直角坐标方程利用直线和曲线的位置关系,进一步联立方程组,利用一元二次根和系数的关系式求出结果本题考查的知识要点:直角坐标方程与参数方程和极坐标方程的互化,直线和曲线的位置关系的应用,一元二次方程根与系数的关系的应用23 利用基本不等式,即可证得;寻找使不等式成立的充分条件即可本题考查均值不等式的应用,考查不等式的证明方法,用分析法证明不等式,关键是寻找使不等式成立的充分条件来源:学#科#网Z#X#X#K

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3