1、温故自查1电容器:两个彼此 又互相 的导体可构成一个电容器绝缘靠近2电容(1)定义:电容器所带的电荷量Q(一个极板所带电荷量的绝对值)与两个极板间电势差U的比值,叫做电容器的电容(2)定义式:C .(3)单位:国际单位制中为 ,简称 ,国际符号为 .1F F pF.法拉法F10610123常见电容器有纸质电容器、电解电容器、可变电容器、平行板电容器等电解电容器接入电路时,应注意其极性4平行板电容器C .考点精析1物理意义:电容是反映电容器容纳电荷本领的物理量(1)由C 可以看出电压一定时,Q越大,C越大,容纳电荷本领越强本式是定义式,适于各种电容器,同时也给出了一种计算电容的方法(2)电容C的
2、大小不随Q变化,也不随电压变化,就像水桶容量的大小不随是否盛水、盛水多少变化一样2决定因素:电容的大小由电介质、正对面积和板间距离等自身因素决定例如平行板电容器,C 是平行板电器电容的决定式,公式可反映出影响平行板电容器电容大小的因素,此式只对平行板电容器适用.温故自查1静电感应把金属导体放在外电场E中,导体内的 由于受电场力作用而 的现象叫做静电感应2静电平衡发生静电感应的导体在自由电子 停止时的状态称为静电平衡状态3静电屏蔽在静电屏蔽现象中,金属网罩可以使罩内不受外界 的影响如果把金属罩 还可以使罩内的带电体对外界不产生影响自由电子重新分布定向移动电场接地考点精析1静电平衡的实质将不带电的
3、金属导体放入场强为E0的静电场中,导体内自由电子便受到与场强E0方向相反的电场力作用除了做无规则热运动,自由电子还要向电场E0的反方向做定向移动(图甲所示),并在导体的一个侧面集结,使该侧面出现负电荷,而相对的另一侧出现“过剩”的等量的正电荷(如图乙所示),等量导种电荷形成一附加电场E.当附加电场与外电场的合场强为零时,即E的大小等于E0的大小而方向相反时(如图丙所示),自由电子的定向移动停止,这时的导体处于静电平衡状态2处于静电平衡状态的导体具有以下特点:(1)导体内部的场强(E0与E的合场强)处处为零,E内0;(2)整个导体是等势体,导体的表面是等势面;(3)导体外部电场线与导体表面垂直;
4、(4)静电荷只分布在导体外表面上,且与导体表面的曲率有关.温故自查1运动状态的分析:带电粒子沿与电场线平行的方向进入匀强电场,粒子的重力不计时,受到的电场力与运动方向在同一直线上,粒子做 运动2用功能观点分析:粒子的重力不计时粒子动能的变化量等于 做的功(1)在匀强电场中,WFlcos qU .(2)非匀强电场中,WABqUAB .匀加速(或匀减速)直线电场力Eqd考点精析联系重力场类比电场规律原来静止的带电粒子,经过电势差为U的电场加速,由动能定理qU mv2,可得粒子的速度v .末速度v的大小与带电粒子的自身性质(q/m)有关带电粒子在匀强电场中的运动,跟物体在重力场中的运动相似,学习中可
5、以用物体仅受重力作用的运动来类比带电粒子在电场中的运动,对运动情况的分析很有帮助不过,两者也有不同之处所有的物体在重力场中具有相同的加速度g,而带电粒子在电场中的加速度aF/mEq/m,其值和带电粒子本身的性质(q/m)有关注意:1.带电粒子在电场中是否考虑重力的问题带电粒子一般指电子、质子、离子、粒子等基本粒子,除非有特殊说明或者有明确的暗示之外,其重力一般可以忽略不计(并非忽略质量);如果是带电颗粒,如尘埃、液滴、小球等,除非有特殊说明或者有明确的暗示之外,其重力一般不能忽略2讨论带电粒子在电场中的直线运动问题(加速或减速)经常用到的方法(1)能量方法能量守恒定律,注意题目中有哪些形式的能
6、量出现;(2)功能关系动能定理,注意过程分析要全面,准确求出过程中的所有功,判断选用分阶段还是全过程使用动能定理;(3)动力学方法牛顿运动定律和匀变速直线运动公式的结合,注意受力分析要全面,特别是重力是否需要考虑的问题,另外要注意运动学公式包含物理的正负号,即其矢量性温故自查1带电粒子以初速度v0垂直电场方向进入电场若只受电场力作用,则做a的 运动2示波器:构造:示波器的核心部件是示波管,它由电子枪、 、荧光屏组成工作原理:如图所示,电子先由加速电压U1加速,再经偏转电压U2偏转类平抛转电极偏考点精析1运动状态分析带电粒子仅受电场力作用,以初速度v0垂直进入匀强电场,粒子做类平抛运动2处理方法
7、垂直于场强方向做匀加速直线运动,即vxv0,xv0t,ax0平行于场强方向做匀加速直线运动,即vyat,y ,a3基本公式如图所示,设质量为m、电荷量为q的带电粒子以初速度v0沿垂直于电场的方向进入长为l、间距为d、电势差为U的平行金属板间的匀强电场中若不计粒子的重力,则可求出如下物理量:命题规律根据平行板电容器的电容C 和电容器电量不变或电势差不变情况下改变S或d判断电场强度的变化情况考例1图中平行放置的金属板A、B组成一只平行板电容器在不断开开关S时,试讨论以下两种情况下电容器两板电势差U、电量Q、板间场强E的变化情况:(1)使A板向上平移拉开一些;(2)使A板向右平移错开一些解析因为开关
8、S没有断开,故该题属于U不变的情况(1)因为平行板电容器的电容C ,当d时C;又因为电容器的带电量QCU,U不变,C时,Q;平行板电容器内部为匀强电场,根据E ,因U不变,d,故E.(2)两板错开意味着正对面积S.由CS可知C,由QCU可知Q.两板间距d不变,由E 判定此时E没有变化答案(1)U不变;Q减小;E减小(2)U不变;Q减小;E不变总结评述若断开S,再讨论下列情况中Q、U、E的变化:(1)使A、B板间距d稍微增大;(2)使A、B正对面积S稍微减少;(3)A、B间充满介电常数1的介质电源断开之后,电容器所带的电量Q不变化,属于Q保持不变的情况:(1)dC ,又因Q不变,由QCU可知U.
9、对E的讨论不能再用E ,这是因为d且U,从这个式子不能判定E变化的情况但本问题中Q不变,所以可设法推导E与Q间的关系式作为判断依据 我们看到,在本情况中E与d无关,当Q、S、均没有变化时,E保持不变(2)由E ,现因S,Q,不变,故E.S使C,且Q不变,根据C 可知U.(3)由E ,现因,Q、S不变,故E.充入介质使C,且Q不变,根据C 可知U.一平行板电容器充电后与电源断开,负极板接地,在两极板间有一正电荷(电荷量很小)固定在P点,如右图所示,以E表示两极板间的场强,U表示电容器的电压,Ep表示正电荷在P点的电势能,若保持负极板不动,将正极板移到图中虚线所示的位置,则()AU变小,E不变BE
10、变大,Ep变大CU变小,Ep不变 DU不变,Ep不变解析与电源断开后,电容器两极板所带电荷量一当正极板向下移动时,d减小,U减小,选项A正确据EpqU得,在实线位置时,Ep1qU1qEd1.同理,在虚线位置时,Ep2qEd1,所以,Ep1Ep2,选项C正确答案AC命题规律带电粒子只受电场力作用在电场中做匀变速直线运动,或做类平抛运动考查利用牛顿定律或动能定理,及平抛运动的特点来解决有关问题一般是以计算题出现考例2(2009常州高级中学第二次阶段调研)如图所示的直角坐标系中,在直线x2l0和y轴区域内存在着两个大小相等、方向相反的有界匀强电场,其中x轴上方的电场方向沿y轴负方向,x轴下方的电场方
11、向沿y轴正方向在电场左边界上A(2l0,l0)到C(2l0,0)区域内,连续分布着电荷量为q、质量为m的粒子从某时刻起由A点到C点间的粒子,依次连续以相同的速度v0沿x轴正方向射入电场若从A点射入的粒子,恰好从y轴上的A(0,l0)沿x轴正方向射出电场,其轨迹如图所示不计粒子的重力及它们间的相互作用 (1)求匀强电场的电场强度E;(2)求在AC间还有哪些位置的粒子,通过电场后也能沿x轴正方向运动?解析(1)从A点射出的粒子,由A到A的运动时间为T,根据运动轨迹和对称性可得:x轴方向2l0v0T (2)设到C点距离为y处射出的粒子通过电场后也沿x轴正方向,粒子第一次到达x轴用时t,水平位移为x,
12、则有:答案(1)(2)AC间y坐标为:y l0(n1,2,3,)的粒子,通过电场后也能沿x轴正方向运动总结评述对于带电粒子在电场中做曲线运动的问题,首先要对带电粒子的运动进行分解,在两个不同的方向分别应用牛顿运动定律和运动学公式对于在不同区域电场不同的问题,要注意从一个电场区域到另一个电场区域带电粒子的运动的变化,综合分析求解结果(2009威海调研考试)如图所示,在两条平行的虚线内存在着宽度为L、场强为E的匀强电场,在与右侧虚线相距也为L处有一与电场平行的屏幕现有一带电量为q、质量为m的带电粒子,以垂直于电场的初速度v0射入电场中,粒子的重力不计,v0方向的延长线与屏幕的交点为O.试求:(1)
13、粒子从射入到打到屏上所用的时间;(2)粒子刚射出电场时的速度方向与初速度方向间夹角的正切值tan;(3)粒子打到屏上的点P到O点的距离s.解析(1)根据题意,粒子在垂直电场的方向上做匀速直线运动,所以粒子从射入到打到屏上所用的时间t(2)设粒子射出电场时沿平行场强方向的速度为vy,根据牛顿第二定律,粒子在电场中的加速度为:a所以vy 所以粒子刚射出电场时的速度方向与初速方向间夹角的正切值为tan (3)设粒子在电场中的偏转距离为y,则命题规律根据交变电场的变化规律,分析粒子受力和运动情况,确定粒子的运动速度、位移、做功或确定有关量的临界问题考例3如图所示,真空中水平放置的相距为d的平行金属板板
14、长为L,两板上加有恒定电压后,板间可视为匀强电场在t0时,将图中所示的交变电压加在两板上,这时恰有一个质量为m、电荷量为q的带电粒子从两板正中间以速度v0水平飞入电场若此粒子离开电场时恰能以平行于两板的速度飞出(粒子重力不计),求:(1)两板上所加交变电压的频率应满足的条件;(2)该交变电压的取值范围解析(1)带电粒子在电场中运动时间每经过一个周期,其中垂直于金属板方向的速度变为零,粒子的速度即恢复为入射时状态平行于金属板所以交变电压的频率应满足方程 (2)因带电粒子在垂直于金属板方向做单方向的反复的加速、减速运动,每次加速和减速过程中在垂直金属板方向的位移大小都相等,其大小x 欲使粒子恰能以平行于金属板的速度飞出,则应有 nT,2nx ,整理得U0Ekb.从a到b,电场力做负功,故电势能增加,即E电aE电b.所以C错,D对答案D