ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:282KB ,
资源ID:307270      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-307270-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(河南省郑州外国语学校初高中数学衔接知识点的专题强化训练:专题三 一元二次方程根与系数的关系 WORD版含答案.doc)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

河南省郑州外国语学校初高中数学衔接知识点的专题强化训练:专题三 一元二次方程根与系数的关系 WORD版含答案.doc

1、 专题三 一元二次方程根与系数的关系【要点回顾】1一元二次方程的根的判断式一元二次方程,用配方法将其变形为: 由于可以用的取值情况来判定一元二次方程的根的情况因此,把叫做一元二次方程的根的判别式,表示为:对于一元二次方程ax2bxc0(a0),有1当 0时,方程有两个不相等的实数根: ;2当 0时,方程有两个相等的实数根: ;3当 0时,方程没有实数根2一元二次方程的根与系数的关系定理:如果一元二次方程的两个根为,那么: 说明:一元二次方程根与系数的关系由十六世纪的法国数学家韦达发现,所以通常把此定理称为”韦达定理”上述定理成立的前提是 特别地,对于二次项系数为1的一元二次方程x2pxq0,若

2、x1,x2是其两根,由韦达定理可知 x1x2p,x1x2q,即 p(x1x2),qx1x2,所以,方程x2pxq0可化为 x2(x1x2)xx1x20,由于x1,x2是一元二次方程x2pxq0的两根,所以,x1,x2也是一元二次方程x2(x1x2)xx1x20因此有 以两个数x1,x2为根的一元二次方程(二次项系数为1)是 x2(x1x2)xx1x20【例题选讲】例1 已知关于的一元二次方程,根据下列条件,分别求出的范围:(1)方程有两个不相等的实数根;(2)方程有两个相等的实数根(3)方程有实数根;(4)方程无实数根例2 已知实数、满足,试求、的值例3 若是方程的两个根,试求下列各式的值:(

3、1) ;(2) ;(3) ;(4) 例4 已知是一元二次方程的两个实数根(1) 是否存在实数,使成立?若存在,求出的值;若不存在,请说明理由(2) 求使的值为整数的实数的整数值解:(1) 假设存在实数,使成立 一元二次方程的两个实数根, ,又是一元二次方程的两个实数根, ,但不存在实数,使成立(2) 要使其值是整数,只需能被4整除,故,注意到,要使的值为整数的实数的整数值为【巩固练习】1若是方程的两个根,则的值为()ABCD2若是一元二次方程的根,则判别式和完全平方式的关系是()ABCD大小关系不能确定3设是方程的两实根,是关于的方程的两实根,则= _ _ ,= _ _ 4已知实数满足,则=

4、_ _ ,= _ ,= _ 5已知关于的方程的两个实数根的平方和等于11,求证:关于的方程有实数根6若是关于的方程的两个实数根,且都大于1(1) 求实数的取值范围;(2) 若,求的值专题三一元二次方程根与系数的关系习题答案例1解:,(1) ; (2) ;(3) ;(4)例2解:可以把所给方程看作为关于的方程,整理得:由于是实数,所以上述方程有实数根,因此:,代入原方程得:综上知:例3解:由题意,根据根与系数的关系得:(1) (2) (3) (4) 说明:利用根与系数的关系求值,要熟练掌握以下等式变形:,等等韦达定理体现了整体思想【巩固练习】1 A; 2A; 3; 4; 5 (1)当时,方程为,有实根;(2) 当时,也有实根6(1) ; (2)

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1