ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:849KB ,
资源ID:305186      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-305186-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(21版高考数学人教A版浙江专用大一轮复习核心考点·精准研析 9-4 直线与圆、圆与圆的位置关系 WORD版含解析.doc)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

21版高考数学人教A版浙江专用大一轮复习核心考点·精准研析 9-4 直线与圆、圆与圆的位置关系 WORD版含解析.doc

1、温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。核心考点精准研析考点一直线与圆的位置关系1.已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是 ()A.相切B.相交C.相离D.不确定2.若直线x+my=2+m与圆x2+y2-2x-2y+1=0相交,则实数m的取值范围为 ()A.(-,+)B.(-,0)C.(0,+)D.(-,0)(0,+)3.(2020衢州模拟)过点(0,1)的直线l与圆C:x2+y2+2x-4y=0的位置关系是世纪金榜导学号()A.相离B.相切C.相交D.相交或相切4.

2、圆(x-3)2+(y-3)2=9上到直线3x+4y-11=0的距离等于1的点的个数为世纪金榜导学号()A.1B.2C.3D.4【解析】1.选B.因为M(a,b)在圆O:x2+y2=1外,所以a2+b21,而圆心O到直线ax+by=1的距离d=1,故直线与圆O相交.2.选D.圆的标准方程为(x-1)2+(y-1)2=1,圆心C(1,1),半径r=1.因为直线与圆相交,所以d=0或m0.3.选C.因为02+12+20-41=-30,所以点(0,1)在圆C的内部,所以过点(0,1)的直线均与圆相交.4.选C.如图所示,因为圆心到直线的距离为=2,又因为圆的半径为3,所以直线与圆相交,故圆上到直线的距

3、离为1的点有3个.判断直线与圆的位置关系的常见方法(1)几何法:利用d与r的关系.(2)代数法:联立方程之后利用判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.考点二圆与圆的位置关系【典例】1.已知圆C1:(x+2a)2+y2=4和圆C2:x2+(y-b)2=1只有一条公切线,若a,bR且ab0,则+的最小值为世纪金榜导学号()A.2B.4C.8D.92.已知圆C:(x-3)2+(y-4)2=1与圆M关于x轴对称,Q为圆M上的动点,当Q到直线y=x+2的距离最小时,Q的横坐标为世纪金榜导学号()A.

4、2-B.2C.3-D.33.(2020金华模拟)在平面直角坐标系xOy中,圆O:x2+y2=4与圆C:(x-3)2+(y-1)2=8相交于P,Q两点,则线段PQ的长为_;记圆O与x轴正半轴交于点M,点N在圆C上滑动,则MNC面积最大时直线NM的方程为_.世纪金榜导学号【解题导思】序号联想解题1由两圆只有一条公切线联想到两圆相内切2由两圆关于x轴对称联想到圆心关于x轴对称3由两圆相交于P,Q两点,联想到相交弦PQ的直线方程【解析】1.选D.由题意可知,圆C1的圆心为(-2a,0),半径为2,圆C2的圆心为(0,b),半径为1,因为两圆只有一条公切线,所以两圆内切,所以=2-1,即4a2+b2=1

5、.所以+=(4a2+b2)=5+5+2=9,当且仅当=,且4a2+b2=1,即a2=,b2=时等号成立,所以+的最小值为9.2.选C.圆M的方程为:(x-3)2+(y+4)2=1,过M(3,-4)且与直线y=x+2垂直的直线方程为y=-x-1,代入(x-3)2+(y+4)2=1,得x=3,故当Q到直线y=x+2的距离最小时,Q的横坐标为x=3-.3.由圆O与圆C方程相减可知,相交弦PQ的方程为3x+y-3=0.点(0,0)到直线PQ的距离d=,PQ=2=.因为MC=,=2.SMNC=sinMCN=2sinMCN,当MCN=90时,SMNC取得最大值.此时MCNC,又kC M=1,则直线NC为y

6、=-x+4.由解得N(1,3)或N(5,-1),当点N(1,3)时,kMN=-3,此时MN的方程为3x+y-6=0;当点N(5,-1)时,kMN=-,此时MN的方程为x+3y-2=0.所以MN的方程为3x+y-6=0或x+3y-2=0.答案:3x+y-6=0或x+3y-2=01.判断两圆的位置关系时常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.2.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差消去x2,y2项得到.3.两圆公共弦长,在其中一圆中,由弦心距d,半弦长,半径r所在线段构成直角三角形,利用勾股定理求解.4.两圆公共弦的垂直平分线过两圆的圆心.1

7、.已知圆C1:(x-a)2+(y+2)2=4与圆C2:(x+b)2+(y+2)2=1相外切,则ab的最大值为()A.B.C.D.2【解析】选C.由已知得圆C1的圆心C1(a,-2),圆C2的圆心C2(-b,-2),由两圆外切可知|a+b|=3,故a2+2ab+b2=9,所以4ab9,所以ab.2.(2020湖州模拟)已知两圆x2+y2=1和x2+y2-6x-8y+m=0,当m=_时,两圆外切;当m=_时,两圆内切.【解析】根据题意,由C1:x2+y2=1,得圆心C1,半径为1,由圆C2:x2+y2-6x-8y+m=0,得(x-3)2+(y-4)2=25-m,其圆心,半径r=,=5,若两圆外切,

8、有=1+=5,解得m=9,若两圆内切,有=-1=5,解得m=-11.答案:9-11考点三直线与圆的综合问题命题精解读考什么:(1)直线与圆的位置关系;(2)直线与圆相切、相交问题;(3)圆的性质.怎么考:以选择题和填空题为主,主要考查求切线方程、弦长问题.学霸好方法1.圆的切线方程常用结论(1)判断:圆心到直线的距离等于圆的半径;(2)切线:已知圆的圆心C,半径为R. 过点P作圆C的切线.条数:若点P在圆内,则无切线;若点P在圆上,则有且只有一条切线;若点P在圆外,则有两条切线;长度:切线长等于.2.直线与圆的位置关系的常用结论(1)当直线与圆相交时,由弦心距(圆心到直线的距离),弦长的一半及

9、半径长所表示的线段构成一个直角三角形.(2)弦长公式|AB|=|xA-xB|=.圆的切线问题【典例】1.已知圆的方程为x2+y2=1,则在y轴上截距为的切线方程为世纪金榜导学号()A.y=x+B.y=-x+C.y=x+或y=-x+D.x=1或y=x+2.(2020嘉兴模拟)若圆(x-3)2+(y+5)2=r2上有且只有两个点到直线4x-3y-2=0的距离等于1,则半径r的取值范围是世纪金榜导学号()A.(4,6)B.4,6C.(4,5)D.(4,5【解析】1.选C.在y轴上截距为且斜率不存在的直线显然不是切线,故设切线方程为y=kx+,则=1,所以k=1,故所求切线方程为y=x+或y=-x+.

10、2.选A.由圆(x-3)2+(y+5)2=r2,可得圆心的坐标为(3,-5),圆心(3,-5)到直线4x-3y-2=0的距离为=5.由|5-r|1得4r6,所以r的取值范围是(4,6).求圆的切线方程时,应注意什么问题?提示:应注意切线斜率不存在的情况.圆的弦长问题【典例】1.直线x+y-2=0与圆x2+y2=4相交于A,B两点,则弦AB的长为_.世纪金榜导学号2.设圆x2+y2-2x-2y-2=0的圆心为C,直线l过(0,3)与圆C交于A,B两点,若|AB|=2,则直线l的方程为世纪金榜导学号()A.3x+4y-12=0或4x-3y+9=0B.3x+4y-12=0或x=0C.4x-3y+9=

11、0或x=0D.3x-4y+12=0或4x+3y+9=0【解析】1.因为圆x2+y2=4的圆心为点(0,0),半径r=2,所以圆心到直线x+y-2=0的距离d=1,所以弦长|AB|=2=2.答案:22.选B.当直线l的斜率不存在,即直线l的方程为x=0时,弦长为2,符合题意;当直线l的斜率存在时,可设直线l的方程为y=kx+3,由弦长为2,半径为2可知,圆心到该直线的距离为1,从而有=1,解得k=-,综上,直线l的方程为x=0或3x+4y-12=0.圆心到弦的距离如何求?提示:如图所示,设直线l被圆C截得的弦为AB,圆的半径为r,圆心到直线的距离为d,则有关系式:|AB|=2.与弦长有关的范围问题【典例】1.若直线y=x+m与曲线y=有且只有一个公共点,则实数m的取值范围为()世纪金榜导学号A.(-1,1-B.-,C.-1,1)D.(1,【解析】选C.y=表示半圆,如图所示:因为直线y=x+m与曲线y=有且只有一个公共点,d=1,解得m=,m=-(舍去)代入(-1,0)可得0=-1+m,m=1,代入(1,0)可得0=1+m,m=-1,结合图象,综上可得-1m0,所以m5.圆心(1,2),半径r=,因为圆和直线相切,所以有=,所以m=.答案:m5关闭Word文档返回原板块

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1