1、-1-2圆与圆的方程-2-2.1圆的标准方程-3-2.1圆的标准方程ZHISHISHULI知识梳理 ZHONGNANJUJIAO重难聚焦SUITANGYANLIAN随堂演练DIANLITOUXI典例透析121.确定圆的条件一个圆的圆心位置和半径一旦给定,这个圆就确定了.-4-2.1圆的标准方程ZHISHISHULI知识梳理 ZHONGNANJUJIAO重难聚焦SUITANGYANLIAN随堂演练DIANLITOUXI典例透析122.圆的标准方程(1)圆的定义:到定点的距离等于定长的点的集合叫作圆,定点叫作圆的圆心,定长称为圆的半径.(2)方程:圆心为C(a,b),半径为r的圆的标准方程是(x-
2、a)2+(y-b)2=r2.(3)当圆心是坐标原点时,有a=b=0,那么圆的方程为x2+y2=r2.-5-2.1圆的标准方程ZHISHISHULI知识梳理 ZHONGNANJUJIAO重难聚焦SUITANGYANLIAN随堂演练DIANLITOUXI典例透析12【做一做1】圆C:(x-2)2+(y+1)2=3的圆心坐标是()A.(2,1)B.(2,-1)C.(-2,1)D.(-2,-1)答案:B-6-2.1圆的标准方程ZHISHISHULI知识梳理 ZHONGNANJUJIAO重难聚焦SUITANGYANLIAN随堂演练DIANLITOUXI典例透析12-7-2.1圆的标准方程ZHISHISH
3、ULI知识梳理 ZHONGNANJUJIAO重难聚焦SUITANGYANLIAN随堂演练DIANLITOUXI典例透析12-8-2.1圆的标准方程ZHISHISHULI知识梳理 ZHONGNANJUJIAO重难聚焦SUITANGYANLIAN随堂演练DIANLITOUXI典例透析-9-2.1圆的标准方程ZHISHISHULI知识梳理 ZHONGNANJUJIAO重难聚焦SUITANGYANLIAN随堂演练DIANLITOUXI典例透析2.如何用待定系数法确定圆的标准方程?剖析:用待定系数法确定圆的标准方程时,圆的方程含有三个参数,因此需有三个独立的条件,其中,圆心是圆的定位条件,半径是圆的定形
4、条件,由三个独立条件可得到三个方程,解方程组得三个待定系数,从而得到圆的标准方程,它的基本步骤如下:(1)根据题意,设所求圆的标准方程为(x-a)2+(y-b)2=r2;(2)根据条件,建立关于a,b,r的方程组;(3)解方程组,求出a,b,r的值,并把它们代入所设圆的方程中,就得到所求圆的方程.-10-2.1圆的标准方程ZHISHISHULI知识梳理 ZHONGNANJUJIAO重难聚焦SUITANGYANLIAN随堂演练DIANLITOUXI典例透析题型一题型二题型三题型四-11-2.1圆的标准方程ZHISHISHULI知识梳理 ZHONGNANJUJIAO重难聚焦SUITANGYANLI
5、AN随堂演练DIANLITOUXI典例透析题型一题型二题型三题型四-12-2.1圆的标准方程ZHISHISHULI知识梳理 ZHONGNANJUJIAO重难聚焦SUITANGYANLIAN随堂演练DIANLITOUXI典例透析题型一题型二题型三题型四-13-2.1圆的标准方程ZHISHISHULI知识梳理 ZHONGNANJUJIAO重难聚焦SUITANGYANLIAN随堂演练DIANLITOUXI典例透析题型一题型二题型三题型四【变式训练1】ABC的三个顶点分别为A(0,5),B(1,-2),C(-3,-4),求其外接圆的方程.分析:方法一:三角形两边的垂直平分线的交点即为外接圆的圆心,由此
6、确定任意两边的垂直平分线的方程,联立方程组得到圆心并可计算出半径.方法二:设出圆的标准方程,代入三点坐标,得关于a,b,r的方程组.-14-2.1圆的标准方程ZHISHISHULI知识梳理 ZHONGNANJUJIAO重难聚焦SUITANGYANLIAN随堂演练DIANLITOUXI典例透析题型一题型二题型三题型四-15-2.1圆的标准方程ZHISHISHULI知识梳理 ZHONGNANJUJIAO重难聚焦SUITANGYANLIAN随堂演练DIANLITOUXI典例透析题型一题型二题型三题型四-16-2.1圆的标准方程ZHISHISHULI知识梳理 ZHONGNANJUJIAO重难聚焦SUI
7、TANGYANLIAN随堂演练DIANLITOUXI典例透析题型一题型二题型三题型四-17-2.1圆的标准方程ZHISHISHULI知识梳理 ZHONGNANJUJIAO重难聚焦SUITANGYANLIAN随堂演练DIANLITOUXI典例透析题型一题型二题型三题型四-18-2.1圆的标准方程ZHISHISHULI知识梳理 ZHONGNANJUJIAO重难聚焦SUITANGYANLIAN随堂演练DIANLITOUXI典例透析题型一题型二题型三题型四-19-2.1圆的标准方程ZHISHISHULI知识梳理 ZHONGNANJUJIAO重难聚焦SUITANGYANLIAN随堂演练DIANLITOU
8、XI典例透析题型一题型二题型三题型四-20-2.1圆的标准方程ZHISHISHULI知识梳理 ZHONGNANJUJIAO重难聚焦SUITANGYANLIAN随堂演练DIANLITOUXI典例透析题型一题型二题型三题型四-21-2.1圆的标准方程ZHISHISHULI知识梳理 ZHONGNANJUJIAO重难聚焦SUITANGYANLIAN随堂演练DIANLITOUXI典例透析题型一题型二题型三题型四-22-2.1圆的标准方程ZHISHISHULI知识梳理 ZHONGNANJUJIAO重难聚焦SUITANGYANLIAN随堂演练DIANLITOUXI典例透析题型一题型二题型三题型四-23-2.
9、1圆的标准方程ZHISHISHULI知识梳理 ZHONGNANJUJIAO重难聚焦SUITANGYANLIAN随堂演练DIANLITOUXI典例透析题型一题型二题型三题型四-24-2.1圆的标准方程ZHISHISHULI知识梳理 ZHONGNANJUJIAO重难聚焦SUITANGYANLIAN随堂演练DIANLITOUXI典例透析1 2 3 4 5-25-2.1圆的标准方程ZHISHISHULI知识梳理 ZHONGNANJUJIAO重难聚焦SUITANGYANLIAN随堂演练DIANLITOUXI典例透析1 2 3 4 5-26-2.1圆的标准方程ZHISHISHULI知识梳理 ZHONGNA
10、NJUJIAO重难聚焦SUITANGYANLIAN随堂演练DIANLITOUXI典例透析1 2 3 4 53点P(m,5)与圆x2+y2=24的位置关系是()A.点P在圆外B.点P在圆内C.点P在圆上D.不确定解析:(m-0)2+(5-0)2=m2+2524,点P在圆外.答案:A-27-2.1圆的标准方程ZHISHISHULI知识梳理 ZHONGNANJUJIAO重难聚焦SUITANGYANLIAN随堂演练DIANLITOUXI典例透析1 2 3 4 5-28-2.1圆的标准方程ZHISHISHULI知识梳理 ZHONGNANJUJIAO重难聚焦SUITANGYANLIAN随堂演练DIANLITOUXI典例透析1 2 3 4 5
Copyright@ 2020-2024 m.ketangku.com网站版权所有