ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:137KB ,
资源ID:301116      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-301116-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(河南省确山县第二高级中学北师大版高中数学教案:选修2-1 3-1椭圆第一课时.doc)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

河南省确山县第二高级中学北师大版高中数学教案:选修2-1 3-1椭圆第一课时.doc

1、确山二高二年级 数学 学科共案时 间: 星 期:主 备 人: 陈春旺 使用人:【教学主题】2.1.1 椭圆及其标准方程【教学目标】1理解椭圆的定义明确焦点、焦距的概念2熟练掌握椭圆的标准方程,会根据所给的条件画出椭圆的草图并确定椭圆的标准方程3能由椭圆定义推导椭圆的方程4启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题;培养学生抽象概括能力和逻辑思维能力【教学过程】一、自主学习11997年初,中国科学院紫金山天文台发布了一条消息,从1997年2月中旬起,海尔波普彗星将逐渐接近地球,过4月以后,又将渐渐离去,并预测3000年后,它还将光临地球上空1997年2月至3月间,

2、许多人目睹了这一天文现象天文学家是如何计算出彗星出现的准确时间呢?原来,海尔波普彗星运行的轨道是一个椭圆,通过观察它运行中的一些有关数据,可以推算出它的运行轨道的方程,从而算出它运行周期及轨道的的周长 (说明椭圆在天文学和实际生产生活实践中的广泛应用,指出研究椭圆的重要性和必要性,从而导入本节课的主题)求轨迹方程的基本步骤:手工操作演示椭圆的形成:取一条定长的细绳,把它的两端固定在画图板上的两点,当绳长大于两点间的距离时,用铅笔把绳子拉近,使笔尖在图板上慢慢移动,就可以画出一个椭圆 分析:(1)轨迹上的点是怎么来的?(2)在这个运动过程中,什么是不变的?1椭圆定义:1、 轨迹叫作椭圆,这两个定

3、点叫做椭圆的 ,两焦点间的距离叫做椭圆的 注意:椭圆定义中容易遗漏的两处地方:(1)两个定点-两点间距离确定 (2)绳长-轨迹上任意点到两定点距离和确定思考:在同样的绳长下,两定点间距离较长,则所画出的椭圆较扁(线段)在同样的绳长下,两定点间距离较短,则所画出的椭圆较圆(圆)由此,椭圆的形状与两定点间距离、绳长有关2.根据定义推导椭圆标准方程:椭圆的焦点在轴上,焦点是,中心在坐标原点的椭圆的标准方程 其中注意若坐标系的选取不同,可得到椭圆的不同的方程 如果椭圆的焦点在轴上(选取方式不同,调换轴)焦点则变成,只要将方程中的调换,即可得 。理解:所谓椭圆标准方程,一定指的是焦点在坐标轴上,且两焦点

4、的中点为坐标原点;在与这两个标准方程中,都有的要求,如方程就不能肯定焦点在哪个轴上;分清两种形式的标准方程,可与直线截距式类比,如中,由于,所以在轴上的“截距”更大,因而焦点在轴上(即看分母的大小) 二、合作探究:例1 写出适合下列条件的椭圆的标准方程:两个焦点坐标分别是(-4,0)、(4,0),椭圆上一点P到两焦点的距离之和等于10;例二、两个焦点坐标分别是(0,2)和(0,2)且过(,)分析:有两种求法:其一由定义求出长轴与短轴长,根据条件写出方程;其二是由已知焦距,求出长轴与短轴的关系,设出椭圆方程,由点在椭圆上的条件,用待定系数的办法得出方程 例三、写出适合下列条件的椭圆的标准方程:(

5、口答)(1) a=4,b=3,焦点在x轴; (2)a=5,c=2,焦点在y轴上.已知三角形ABC的一边长为6,周长为16,求顶点A的轨迹方程三、课堂练习:1 椭圆上一点P到一个焦点的距离为5,则P到另一个焦点的距离为( )A.5 B.6 C.4 D.102.椭圆的焦点坐标是( )A.(5,0) B.(0,5) C.(0,12) D.(12,0)3.已知椭圆的方程为,焦点在轴上,则其焦距为( )A.2 B.2C.2 D.4.,焦点在y轴上的椭圆的标准方程是 5.方程表示椭圆,则的取值范围是( )A. B.)C. D. )四、课堂小结我的收获 :本节课学习了椭圆的定义及标准方程,应注意以下几点: 椭圆的定义中, ; 椭圆的标准方程中,焦点的位置看,的分母大小来确定; 、的几何意义 我的困惑五、能力拓展1判断下列方程是否表上椭圆,若是,求出的值 ; ; 2 椭圆的焦距是 ,焦点坐标为 ;若CD为过左焦点的弦,则的周长为 3 方程的曲线是焦点在上的椭圆 ,求的取值范围4 化简方程:5 椭圆上一点P到焦点F1的距离等于6,则点P到另一个焦点F2的距离是 6 动点P到两定点 (-4,0), (4,0)的距离的和是8,则动点P的轨迹为 _ 【知识梳理】【典型例题】

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1