ImageVerifierCode 换一换
格式:DOC , 页数:45 ,大小:2.36MB ,
资源ID:297376      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-297376-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(广东省2013届高三最新理科试题精选(37套含13大市区的二模)分类汇编7:立体几何(2) WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

广东省2013届高三最新理科试题精选(37套含13大市区的二模)分类汇编7:立体几何(2) WORD版含答案.doc

1、广东省2013届高三最新理科试题精选(37套含13大市区的二模)分类汇编7:立体几何(2)一、选择题 (广东省汕头市2013届高三上学期期末统一质量检测数学(理)试题)如图正四棱锥(底面是正方形,顶点在底面的射影是底 面的中心)P-ABCD的底面边长为6cm,侧棱长为 5cm,则它的侧视图的周长等于()A17cmBC16cmD14cm【答案】D (广东省汕头市2013届高三3月教学质量测评数学(理)试题)设O是空间一点,a,b,c是空间三条直线,是空间两个平面,则下列命题中,逆命题不成立的是()A当ab=O且a,b时,若ca,cb,则c B当ab=O且a,b时,若a,b,则 C当b时,若b,则

2、 D当b时,且c时,若c,则bc【答案】C (广东省梅州市2013届高三3月总复习质检数学(理)试题)如图是一个几何体的三视图,若它的体积是3,则a=()ABCD【答案】C (广东省茂名市2013届高三第一次模拟考试数学(理)试题)若某一几何体的正视图与侧视图均为边长是1的正方形,且其体积为,则该几何体的俯视图可以是 【答案】C (广东省揭阳市2013届高三3月第一次高考模拟数学(理)试题(含解析)一简单组合体的三视图及尺寸如图(1)示(单位: )则该组合体的体积为.()A72000B64000 C56000D44000 图(1) 【答案】B由三视图知,该组合体由两个直棱柱组合而成,故其体积,

3、故选B (广东省江门市2013年高考模拟考试(即一模)数学(理)试题 )右图是某个四面体的三视图,该四面体的体积为3334正视图侧视图俯视图()A72B36C24D12【答案】D (广东省华附、省实、深中、广雅四校2013届高三上学期期末联考数学(理)试题)若平面,满足,=l,P,Pl,则下列命题中是假命题的为()A过点P垂直于平面的直线平行于平面 B过点P垂直于直线l的直线在平面内 C过点P垂直于平面的直线在平面内 D过点P在平面内作垂直于l的直线必垂直于平面【答案】解:对于A,由于过点P垂直于平面的直线必平行于平面内垂直于交线的直线,因此平行于平面,因此A正确.根据面面垂直的性质定理知,选

4、项CD正确. 选B (广东省广州市2013届高三调研测试数学(理)试题)已知四棱锥的三视图如图1所示,则四棱锥的四个侧面中面积最大的是()ABCD【答案】C 分析:三棱锥如图所示, , , (广东省广州市2013届高三3月毕业班综合测试试题(一)数学(理)试题)某空间几何体的三视图及尺寸如图1,则该几何体的体积是()ABCD【答案】A (广东省潮州市2013届高三上学期期末教学质量检测数学(理)试题)对于平面和共面的两直线、,下列命题中是真命题的为()A若,则B若,则 C若,则D若、与所成的角相等,则【答案】C 考查空间中线、面的平行与垂直的位置关系的判断. (2013年广东省佛山市普通高中高

5、三教学质量检测(一)数学(理)试题)一个直棱柱被一个平面截去一部分后所剩几何体的三视图如图所示,则该几何体的体积为22131正视图侧视图俯视图第4题图()A9B10C11D【答案】C (广东省湛江市2013届高三4月高考测试(二)数学理试题(WORD版)某几何体的一条棱长为,在该几何体的正视图中,这条棱的投影是长为的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a和b的线段,则a + b的最大值为()ABC4D【答案】C (广东省韶关市2013届高三4月第二次调研测试数学理试题)一空间几何体的三视图如右图所示,该几何体的体积为12+,则正视图与侧视图中x的值为 . . . .【答案

6、】C 二、填空题(广东省茂名市实验中学2013届高三下学期模拟(二)测试数学(理)试题(详解)某几何体的三视图如图所示,且该几何体的体积为3,则正视图中的x=_【答案】3 (广东省海珠区2013届高三上学期综合测试一数学(理)试题)一个几何体的三视图如图所示,则该几何体的体积为_. 1正视图俯视图2110.50.521侧视图图2 【答案】 (广东省潮州市2013届高三上学期期末教学质量检测数学(理)试题)若一个正三棱柱的三视图如下图所示,则这个正三棱柱的体积为_.主视图俯视图2左视图【答案】.由左视图知正三棱柱的高,设正三棱柱的底面边长,则,故,底面积,故. (广东省肇庆市2013届高三4月第

7、二次模拟数学(理)试题)图2是一个组合体的三视图,根据图中数据,可得该几何体的表面积等于(几何体的接触面积可忽略不计)_【答案】解析:从三视图可以看出该几何体是由一个球和一个圆柱组合而成的,其表面及为 (广东省深圳市2013届高三第二次调研考试数学理试题(2013深圳二模)某简单组合体的三视图如图2,其中正视图与侧视图相同(尺寸如图,单位:cm),则该组合体的体积是_(结果保留)【答案】 三、解答题(广东省汕头市2013届高三上学期期末统一质量检测数学(理)试题)如图,在四棱锥P-ABCD中,AB丄平面PAD,PD=AD, E为PB的中点,向量,点H在AD上,且(I):EF/平面PAD.(II

8、)若PH=,AD=2, AB=2, CD=2AB,(1)求直线AF与平面PAB所成角的正弦值. (2)求平面PAD与平面PBC所成二面角的平面角的余弦值.【答案】() 取PA的中点Q,连结EQ、DQ, 则E是PB的中点, ,四边形EQDF为平行四边形, , ()解法一:证明: , PHAD, 又 AB平面PAD,平面PAD,ABPH, 又 PHAD=H, PH平面ABCD; - 连结AE 又且 由()知 , 又 在 又 (2)延长DA,CB交于点M,连接PM,则PM为平面PAD与平面PBC所成二面角的交线. 因为,所以点A,B分别为DM,CM的中点,所以DM=4, 在中:, , 又因为,所以

9、即为所求的二面角的平面角. 所以在中: 解法二:(向量法)(1)由()可得 又 在平面ABCD内过点,以H为原点,以正方向建立空间直角坐标系 设平面PAB的一个法向量为 , 得y=0 令 得x=3 设直线AF与平面PAB所成的角为 则 (9分 ) (2) 显然向量为平面PAD的一个法向量,且 设平面PBC的一个法向量为, , 由得到 由得到,令,则 所以, 所以平面PAD与平面PBC所成二面角的平面角的余弦值为(14分 ) (广东省汕头市2013届高三3月教学质量测评数学(理)试题)(本小腼溯分14分)在三棱锥P-ABC中.侧梭长均为4.底边AC=4. AB=2,BC=2,D. E分别为PC.

10、 BC的中点.I)求证:平面PAC平面ABC. (II)求三棱锥P-ABC的体积;(III)求二面角C-AD-E的余弦值.【答案】证明:()因为, 取的中点,连接,易得:, , . . 又 平面,又 注意:该步骤要求学生的表达严谨规范,对于几个垂直的证明,如果没有过程,相应步骤得分为0分,而利用结论的后续证明只要正确,可以相应步骤得分) () (注意:该步骤只要计算出错,就0分) ()方法一:过点E 作于H,过点H作于M, 连接,因为平面平面,平面平面=, ,平面,所以平面, (三垂线定理)(注意:也可以证明线面垂直) 即为所求的二面角的平面角 分别为中点, 在中: , 在中, 所以,中, 所

11、以 zxyMHOMH 方法二:以O为原点,建立如图所示的空间直角坐标系 , , , 所以,可以设平面的一个法向量为, 平面的一个法向量为, ,所以令,则, 所以,可以设所求的二面角为,显然为锐角 由可得: (广东省梅州市2013届高三3月总复习质检数学(理)试题)已知在四棱锥P-ABCD中,底面ABCD是矩形,PA平面ABCD,PA=AD=1,AB=2,E,F分别是AB、PD的中点.(1)求证:AF平面PEC; (2)求二面角P-EC-D的余弦值;(3)求点B到平面PEC的距离.【答案】 (广东省茂名市实验中学2013届高三下学期模拟(二)测试数学(理)试题(详解)如图,矩形ABCD中,AB=

12、2BC=4,E为边AB的中点,将ADE沿直线DE翻折成A1DE.(1)当平面A1DE平面BCD时,求直线CD与平面CEA1所成角的正弦值;(2)设M为线段A1C的中点,求证:在ADE翻转过程中,BM的长度为定值.【答案】解:(1)过A1作A1FDE,由已知可得A1F平面BCD,且F为DE中点,以D为原点,DC、DA所在直线为y,x轴建立空间直角坐标系,则 D(0,0,0),C(0,4,0),E(2,2,0),A1(1,1,) 求得平面CEA1的一个法向量为m=(1,1,) =(0,4,0),m=|m|cos,得cos= 所以,直线CD与平面CEA1所成角的正弦值为. (2)取A1D中点G,连结

13、MG,EG,由MGEB,且MG=EB,可得BMGE为平行四边形,所以,BM=EG,而三角形ADE中,EG的长度为定值,所以,BM的长度为定值. (广东省茂名市2013届高三第一次模拟考试数学(理)试题)如图,为矩形,为梯形,平面平面,.(1)若为中点,求证:平面;(2)求平面与所成锐二面角的大小.【答案】(1)证明:连结,交与,连结, 中,分别为两腰的中点 因为面,又面,所以平面 (2)解法一:设平面与所成锐二面角的大小为,以为空间坐标系的原点,分别以所在直线为轴建立空间直角坐标系,则 设平面的单位法向量为,则可设 设面的法向量,应有 即: 解得:,所以 所以平面与所成锐二面角为60 解法二:

14、延长CB、DA相交于G,连接PG,过点D作DHPG ,垂足为H,连结HC 矩形PDCE中PDDC,而ADDC,PDAD=D CD平面PAD CDPG,又CDDH=D PG平面CDH,从而PGHC DHC为平面PAD与平面PBC所成的锐二面角的平面角 在中, 可以计算 在中, 所以平面与所成锐二面角为60 (广东省揭阳市2013届高三3月第一次高考模拟数学(理)试题(含解析)如图(4),在等腰梯形CDEF中,CB、DA是梯形的高,现将梯形沿CB、DA折起,使且,得一简单组合体如图(5)示,已知分别为的中点.(1)求证:平面; (2)求证: ;(3)当多长时,平面与平面所成的锐二面角为? 图(4)

15、 图(5)【答案】(1)证明:连,四边形是矩形,为中点, 为中点, 在中,为中点,故 平面,平面,平面; (其它证法,请参照给分) (2)依题意知 且 平面 平面, 为中点, 结合,知四边形是平行四边形 , 而, ,即 又 平面, 平面, (3)解法一:如图,分别以所在的直线为轴建立空间直角坐标系 设,则 易知平面的一个法向量为, 设平面的一个法向量为,则 故,即 令,则,故 , 依题意, 即时,平面与平面所成的锐二面角为 【解法二:过点A作交DE于M点,连结PM,则 为二面角A-DE-F的平面角, 由=600,AP=BF=2得AM, 又得, 解得,即时,平面与平面所成的锐二面角为 】 (广东

16、省华附、省实、深中、广雅四校2013届高三上学期期末联考数学(理)试题)如图,在三棱锥V-ABC中,VC底面ABC,ACBC,D是AB的中点,且AC=BC=a,VDC=q (0q ) ()求证:平面VAB平面VCD;()当角q 变化时,求直线BC与平面VAB所成的角的取值范围.VBCDA【答案】解法1: ()AC=BC=a, ACB是等腰三角形, 又D是AB的中点, CDAB,又VC底面ABC. VCAB.因VC,CD 平面VCD, AB平面VCD.又AB 平面VAB, ADBCHV 平面VAB平面VCD. () 过点C在平面VCD内作CHVD于H, 则由()知CH平面VAB. 连接BH,BH

17、是CB在平面VAB上的射影,于是 CBH就是直线BC与平面VAB所成的角.在RtCHD中,CH=asinq; 设CBH=j,在RtBHC中,CH=asinj, sinq= sinj , 0q , 0sinq 1,0sinj . 又0j ,0w . 即直线与平面所成角的取值范围为(0, ). 解法2:()以CA, CB, CV所在的直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,则 C(0,0,0), A(a,0,0), B(0,a,0), D(,0),V(0,0,atanq ), 于是,=(,-atanq),=(,0),=(-a,a,0). 从而=(-a,a,0)(,0)=- a2+

18、a2+0=0,即, ABCD. 同理=(-a,a,0)(,-atanq)=-a2+a2+0=0,即, ABVD.又CDVD=D,AB平面VCD.又AB 平面VAB. 平面VAB平面VCD. ()设直线BC与平面VAB所成的角为j ,平面VAB的一个法向量为n=(x, y, z), ADBCVxyz 则由n=0, n=0. 得 可取n=(1,1, ),又=(0,-a,0), 于是sinj =| |= sinq , 0q ,0sinq 1,0sinj . 又0j ,0j . 即直线BC与平面VAB所成角的取值范围为(0, ). (广东省海珠区2013届高三上学期综合测试一数学(理)试题)(本小题满

19、分分)如图,在三棱柱中,侧棱与底面垂直,点分别为和的中点.(1)证明:; (2)证明:平面;(3)求二面角的正弦值.图6【答案】(本小题主要考查空间线面关系、空间向量等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力) 解 :证明(1)证法一:由题设知, 又 平面,平面, 平面, 平面 又四边形为正方形,为的中点, ,平面,平面 平面 又平面 证法二:(向量法) 以点为坐标原点,分别以直线 为轴,轴,轴建立空间直角坐标系,如图所示 于是, (2)证法一: 连接 由题意知,点分别为和的中点, . 又平面,平面, 平面 证法二:取中点,连,而 分别为与的中

20、点, 平面,平面 平面, 同理可证平面 又 平面平面 平面, 平面 证法三(向量法): 以点为坐标原点,分别以直线 为轴,轴,轴建立空间直角坐标系,如图所示.于是 , 平面 向量是平面的一个法向量 又平面 平面 (3)解法一:以点为坐标原点,分别以直线 为轴,轴,轴建立空间直角坐标系,如图所示. 于是 , 由(1)知是平面的一个法向量, 设平面的法向量为, 设向量和向量的夹角为,则 二面角的的正弦值为 解法二(几何法):如图,将几何体补形成一个正方体,连交于点,连,显然,都在同一平面上. 易证, 平面,平面, ,又 平面. 取中点,连, 分别是的中点 , 平面, 且为垂足,即平面,过点作于,

21、过作交于,连, 则即是所求二面角的补角 在中, , 在中, 又 在 中, = 所求二面角的正弦值为 (广东省广州市2013届高三调研测试数学(理)试题)如图4,已知四棱锥,底面是正方形,面,点是的中点,点是的中点,连接,.(1) 求证:面;(2)若,求二面角的余弦值.【答案】(本小题主要考查空间线面位置关系、二面角等基础知识,考查空间想象、推理论证、抽象概括和运算求解能力,以及化归与转化的数学思想方法) (1)证法1:取的中点,连接, 点是的中点, 点是的中点,底面是正方形, . 四边形是平行四边形. 平面,平面, 面 证法2:连接并延长交的延长线于点,连接, 点是的中点, , 点是的中点 点

22、是的中点, 面,平面, 面. 证法3:取的中点,连接, 点是的中点,点是的中点, ,. 面,平面, 面 面,平面, 面 ,平面,平面, 平面面 平面, 面 (2)解法1:,面, 面 面, 过作,垂足为,连接, ,面,面, 面 面, 是二面角的平面角 在Rt中,得, 在Rt中,得, 在Rt中, 二面角的余弦值为 解法2:,面, 面. 在Rt中,得, 以点为原点,所在直线为轴,所在直线为轴,所在直线为轴, 建立空间直角坐标系, 则. , 设平面的法向量为, 由, 得 令,得,. 是平面的一个法向量 又是平面的一个法向量, 二面角的余弦值为 (广东省广州市2013届高三3月毕业班综合测试试题(一)数

23、学(理)试题)如图4,在三棱柱中,是边长为的等边三角形,平面,分别是,的中点. (1)求证:平面;(2)若为上的动点,当与平面所成最大角的正切值为时,求平面 与平面所成二面角(锐角)的余弦值.【答案】(本小题主要考查空间线面位置关系、直线与平面所成的角、二面角等基础知识,考查空间想象、推理论证、抽象概括和运算求解能力,以及化归与转化的数学思想方法) 解法一: (1)证明:延长交的延长线于点,连接. ,且, 为的中点 为的中点, . 平面,平面, 平面 (2)解:平面,平面, 是边长为的等边三角形,是的中点, ,. 平面,平面, 平面 为与平面所成的角 , 在Rt中, 当最短时,的值最大,则最大

24、 当时,最大. 此时,. ,平面, 平面 平面,平面, ,. 为平面 与平面所成二面角(锐角). 在Rt中, 平面 与平面所成二面角(锐角)的余弦值为 解法二: (1)证明:取的中点,连接、. 为的中点, ,且 ,且, , 四边形是平行四边形. 平面,平面, 平面. (苏元高考吧:) (2)解:平面,平面, 是边长为的等边三角形,是的中点, ,. 平面,平面, 平面 为与平面所成的角 , 在Rt中, 当最短时,的值最大,则最大 当时,最大. 此时,. 在Rt中,. RtRt, ,即. 以为原点,与垂直的直线为轴,所在的直线为轴,所在的直线为轴, 建立空间直角坐标系. 则,. ,. 设平面的法向

25、量为, 由, 得 (苏元高考吧:) 令,则. 平面的一个法向量为 平面, 是平面的一个法向量. 平面 与平面所成二面角(锐角)的余弦值为 (广东省潮州市2013届高三上学期期末教学质量检测数学(理)试题)已知梯形中,、分别是、上的点,.沿将梯形翻折,使平面平面(如图).是的中点,以、为顶点的三棱锥的体积记为.(1)当时,求证: ; (2)求的最大值;(3)当取得最大值时,求异面直线与所成的角的余弦值. 【答案】(法一)(1)证明:作,垂足,连结, 平面平面,交线,平面, 平面,又平面,故, ,. 四边形为正方形,故. 又、平面,且,故平面. 又平面,故. (2)解:,平面平面,交线,平面. 面

26、.又由(1)平面,故, 四边形是矩形,故以、为顶点的三棱 锥 的高, 又. 三棱锥的体积 . 当时,有最大值为. (3)解:由(2)知当取得最大值时,故, 由(2)知,故是异面直线与所成的角. 在中, 由平面,平面,故 在中 , . 异面直线与所成的角的余弦值为. 法二:(1)证明:平面平面,交线,平面,故平面,又、平面, ,又,取、分别为轴、 轴、轴,建立空间坐标系,如图所示. 当时,又,. ,. , . ,即; (2)解:同法一; (3)解:异面直线与所成的角等于或其补角. 又, 故 ,故异面直线与所成的角的余弦值为. (2013年广东省佛山市普通高中高三教学质量检测(一)数学(理)试题)

27、如图所示,已知为圆的直径,点为线段上一点,且,点为圆上一点,且.点在圆所在平面上的正投影为点,.(1)求证:;(2)求二面角的余弦值.PABDCO第18题图【答案】解析:()法1:连接,由知,点为的中点, PABDCO又为圆的直径, 由知, , 为等边三角形,从而 点在圆所在平面上的正投影为点, 平面,又平面, , 由得,平面, 又平面, (注:证明平面时,也可以由平面平面得到,酌情给分.) 法2:为圆的直径, 在中设,由,得, ,则, ,即 点在圆所在平面上的正投影为点, 平面,又平面, , 由得,平面, 又平面, 法3:为圆的直径, 在中由得, 设,由得, 由余弦定理得, ,即 点在圆所在

28、平面上的正投影为点, 平面,又平面, , 由得,平面, 又平面, PABDCOE()法1:(综合法)过点作,垂足为,连接 由(1)知平面,又平面, ,又, 平面,又平面, , 为二面角的平面角 由()可知, (注:在第()问中使用方法1时,此处需要设出线段的长度,酌情给分.) ,则, 在中, ,即二面角的余弦值为 法2:(坐标法)以为原点,、和的方向分别为轴、轴和轴的正向,建立如图所示的空间直角坐标系. PABDCOyzx (注:如果第()问就使用“坐标法”时,建系之前先要证明,酌情给分.) 设,由,得, , , 由平面,知平面的一个法向量为 设平面的一个法向量为,则 ,即,令,则, , 设二

29、面角的平面角的大小为, 则, 二面角的余弦值为 (广东省肇庆市2013届高三4月第二次模拟数学(理)试题)如图,在直角梯形中,已知,.将沿对角线折起(图),记折起后点的位置为且使平面平面.(1)求三棱锥的体积;(2)求平面与平面所成二面角的平面角的大小.【答案】解:(1)平面平面, 平面,平面平面, 平面, 即是三棱锥的高, 又, , , , 三棱锥的体积. (2)方法一: 平面,平面, 又,平面, 平面, , ,即 由已知可知, ,平面 平面,平面平面 所以平面与平面所成二面角的平面角的大小为. 方法二: 过E作直线,交BC于G,则, 如图建立空间直角坐标系,则, , 设平面的法向量为, 则

30、,即化简得 令,得,所以是平面的一个法向量. 同理可得平面PCD的一个法向量为 设向量和所成角为,则 平面与平面所成二面角的平面角的大小为. (广东省湛江市2013届高三4月高考测试(二)数学理试题(WORD版)如图,在长方体ABCD一A1B1C1D1中,AA1=2, AD = 3, E为CD中点,三棱 锥A1-AB1E的体积是6.(1)设P是棱BB1的中点,证明:CP/平面AEB1;(2)求AB的长;(3)求二面角BAB1-E的余弦值.【答案】 (广东省深圳市2013届高三第二次调研考试数学理试题(2013深圳二模)如图6,已知四边形是矩形,三角形是正三角形,且平面平面.(1)若是的中点,证

31、明:;(2)求二面角的余弦值.【答案】 (广东省韶关市2013届高三4月第二次调研测试数学理试题)如图甲,在平面四边形ABCD中,已知,现将四边形ABCD沿BD折起,使平面ABD平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.(1)求证:DC平面ABC; (2)求BF与平面ABC所成角的正弦值;(3)求二面角B-EF-A的余弦值. 【答案】证明:在图甲中且 (1) , 即 在图乙中,平面ABD平面BDC , 且平面ABD平面BDC=BD AB底面BDC,ABCD 又,DCBC,且 DC平面ABC (2)解法1:E、F分别为AC、AD的中点 EF/CD,又由(1)知,DC平面ABC,

32、EF平面ABC,垂足为点E FBE是BF与平面ABC所成的角 在图甲中, , 设则, 在RtFEB中, 即BF与平面ABC所成角的正弦值为 解法2:如图,以B为坐标原点,BD所在的直线为x轴建立空间直角坐标系如下图示, 设,则, 可得, , , 设BF与平面ABC所成的角为 由(1)知DC平面ABC (3)由(2)知 FE平面ABC, 又BE平面ABC,AE平面ABC,FEBE,FEAE, AEB为二面角B-EF-A的平面角 在AEB中, 即所求二面角B-EF-A的余弦为 (广东省汕头市2013年普通高中高三教学质量测试试题(二)理科数学试卷)如图,在梯形中,平面平面,四边形是矩形,点在线段上

33、.(1)求证:平面;(2)当为何值时,平面?证明你的结论;(3)求二面角的余弦值.【答案】证明:()在梯形ABCD中, 四边形ABCD是等腰梯形, 且 , 又平面平面ABCD,交线为AC,平面ACFE. ()当时,平面BDF. 现在证明如下: 在梯形ABCD中,设,连结FN,则 而,MFAN, 四边形ANFM是平行四边形. 又平面BDF,平面BDF. 平面BDF. ()方法一;(几何法)取EF中点G,EB中点H,连结DG、GH、DH, 容易证得DE=DF, 平面ACFE, 又, 又, 是二面角BEFD的平面角. 在BDE中, 又在DGH中, 由余弦定理得即二面角BEFD的平面角余弦值为 方法二;(向量法)以C为坐标原点,建立如图所示的直角坐标系: , 所以, 分别设平面BEF与平面DEF的法向量为, 所以,令,则 又显然,令 所以,设二面角的平面角为为锐角 所以

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3