ImageVerifierCode 换一换
格式:DOC , 页数:77 ,大小:3.67MB ,
资源ID:285006      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-285006-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《创新设计教师用书》(人教A版理科)2015届高考数学第一轮复习细致讲解练:第五篇 数列.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《创新设计教师用书》(人教A版理科)2015届高考数学第一轮复习细致讲解练:第五篇 数列.doc

1、第五篇数列A第1讲数列的概念与简单表示法最新考纲1了解数列的概念和几种简单的表示方法(列表、图象、通项公式)2了解数列是自变量为正整数的一类函数.知 识 梳 理1数列的概念(1)数列的定义按照一定顺序排列的一列数称为数列数列中的每一个数叫做这个数列的项排在第一位的数称为这个数列的第1项,通常也叫做首项(2)数列的通项公式如果数列an的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式(3)数列的前n项和在数列an中,Sna1a2an叫做数列的前n项和2数列的表示方法(1)表示方法列表法列表格表达n与f(n)的对应关系图象法把点(n,f(n)画在平面直角坐标系中公式

2、法通项公式把数列的通项使用通项公式表达的方法递推公式使用初始值a1和an1f(an)或a1,a2和an1f(an,an1)等表达数列的方法(2)数列的函数特征:上面数列的三种表示方法也是函数的表示方法,数列可以看作是定义域为正整数集(或它的有限子集1,2,n的函数anf(n)当自变量由小到大依次取值时所对应的一列函数值*3数列的分类分类原则类型满足条件按项数分类有穷数列项数有限无穷数列项数无限单调性递增数列an1an其中nN*递减数列an1an常数列an1an摆动数列从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列周期性nN*,存在正整数常数k,ankan4.an与Sn的关系若数列

3、an的前n项和为Sn,则an辨 析 感 悟1对数列概念的认识(1)数列1,2,3,4,5,6与数列6,5,4,3,2,1表示同一数列()(2)1,1,1,1,不能构成一个数列()2对数列的性质及表示法的理解(3)(教材练习改编)数列1,0,1,0,1,0,的通项公式,只能是an.()(4)任何一个数列不是递增数列,就是递减数列()(5)(2013开封模拟改编)已知Sn3n1,则an23n1.()感悟提升1一个区别“数列”与“数集”数列与数集都是具有某种属性的数的全体,数列中的数是有序的,而数集中的元素是无序的,同一个数在数列中可以重复出现,而数集中的元素是互异的,如(1)、(2)2三个防范一是

4、注意数列不仅有递增、递减数列,还有常数列、摆动数列,如(4)二是数列的通项公式不唯一,如(3)中还可以表示为an三是已知Sn求an时,一定要验证n1的特殊情形,如(5).学生用书第79页考点一由数列的前几项求数列的通项【例1】 根据下面各数列前几项的值,写出数列的一个通项公式:(1)1,7,13,19,;(2),;(3),2,8,;(4)5,55,555,5 555,.解(1)偶数项为正,奇数项为负,故通项公式必含有因式(1)n,观察各项的绝对值,后一项的绝对值总比它前一项的绝对值大6,故数列的一个通项公式为an(1)n(6n5)(2)这是一个分数数列,其分子构成偶数数列,而分母可分解为13,

5、35,57,79,911,每一项都是两个相邻奇数的乘积知所求数列的一个通项公式为an.(3)数列的各项,有的是分数,有的是整数,可将数列的各项都统一成分数再观察即,从而可得数列的一个通项公式为an.(4)将原数列改写为9,99,999,易知数列9,99,999,的通项为10n1,故所求的数列的一个通项公式为an(10n1)规律方法 根据所给数列的前几项求其通项时,需仔细观察分析,抓住其几方面的特征:分式中分子、分母的各自特征;相邻项的变化特征;拆项后的各部分特征;符号特征应多进行对比、分析,从整体到局部多角度观察、归纳、联想【训练1】 根据下面数列的前几项的值,写出数列的一个通项公式:(1),

6、;(2),1,.解(1)各项的分母分别为21,22,23,24,易看出第2,3,4项的分子分别比分母少3.因此把第1项变为,原数列可化为,因此可得数列的一个通项公式为an(1)n.(2)将数列统一为,对于分子3,5,7,9,是序号的2倍加1,可得分子的通项公式为bn2n1,对于分母2,5,10,17,联想到数列1,4,9,16,即数列n2,可得分母的通项公式为cnn21,因此可得数列的一个通项公式为an.考点二由an与Sn的关系求通项an【例2】 (2013广东卷节选)设数列an的前n项和为Sn.已知a11,an1n2n,nN*.(1)求a2的值;(2)求数列an的通项公式解(1)依题意,2S

7、1a21,又S1a11,所以a24;(2)由题意2Snnan1n3n2n,所以当n2时,2Sn1(n1)an(n1)3(n1)2(n1)两式相减得2annan1(n1)an(3n23n1)(2n1),整理得(n1)annan1n(n1),即1,又1,故数列是首项为1,公差为1的等差数列,所以1(n1)1n,所以ann2.规律方法 给出Sn与an的递推关系,求an,常用思路是:一是利用SnSn1an(n2)转化为an的递推关系,再求其通项公式;二是转化为Sn的递推关系,先求出Sn与n之间的关系,再求an.【训练2】 设数列an的前n项和为Sn,数列Sn的前n项和为Tn,满足Tn2Snn2,nN*

8、.(1)求a1的值;(2)求数列an的通项公式解(1)令n1时,T12S11,T1S1a1,a12a11,a11.(2)n2时,Tn12Sn1(n1)2,则SnTnTn12Snn22Sn1(n1)22(SnSn1)2n12an2n1.因为当n1时,a1S11也满足上式,所以Sn2an2n1(n1),当n2时,Sn12an12(n1)1,两式相减得an2an2an12,所以an2an12(n2),所以an22(an12),因为a1230,所以数列an2是以3为首项,公比为2的等比数列所以an232n1,an32n12,当n1时也成立,所以an32n12.学生用书第80页考点三由递推公式求数列的通

9、项公式【例3】 在数列an中,(1)若a12,an1ann1,则通项an_;(2)若a11,an13an2,则通项an_.审题路线(1)变形为an1ann1用累加法,即ana1(a2a1)(a3a2)(anan1)得出an.(2)变形为an113(an1)再变形为用累乘法或迭代法可求an.解析(1)由题意得,当n2时,ana1(a2a1)(a3a2)(anan1)2(23n)21.又a121,符合上式,因此an1.(2)an13an2,即an113(an1),即3,法一3,3,3,3.将这些等式两边分别相乘得3n.因为a11,所以3n,即an123n1(n1),所以an23n11(n2),又a

10、11也满足上式,故an23n11.法二由3,即an113(an1),当n2时,an13(an11),an13(an11)32(an21)33(an31)3n1(a11)23n1,an23n11;当n1时,a1123111也满足an23n11.答案(1)1(2)23n11规律方法 数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:求出数列的前几项,再归纳猜想出数列的一个通项公式;将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项【训练3】 设an是首项为1的正项数列,且(n1)anaa

11、n1an0(n1,2,3,),则它的通项公式an_.解析(n1)aan1anna0,(an1an)(n1)an1nan0,又an1an0,(n1)an1nan0,即,an.答案 1求数列通项或指定项,通常用观察法(对于交错数列一般用(1)n或(1)n1来区分奇偶项的符号);已知数列中的递推关系,一般只要求写出数列的前几项,若求通项可用归纳、猜想和转化的方法2由Sn求an时,an注意验证a1是否包含在后面an的公式中,若不符合要单独列出,一般已知条件含an与Sn的关系的数列题均可考虑上述公式3已知递推关系求通项:对这类问题的要求不高,但试题难度较难把握一般有三种常见思路:(1)算出前几项,再归纳

12、、猜想;(2)“an1panq”这种形式通常转化为an1p(an),由待定系数法求出,再化为等比数列;(3)利用累加、累乘法或迭代法可求数列的通项公式 思想方法4用函数的思想解决数列问题【典例】 (2013新课标全国卷)等差数列an的前n项和为Sn,已知S100,S1525,则nSn的最小值为_解析由题意及等差数列的性质,知a1a100,a1a15.两式相减,得a15a105d,所以d,a13.所以nSnnna1d.令f(x),x0,则f(x)x(3x20),由函数的单调性,可知函数f(x)在x时取得最小值,检验n6时,6S648,而n7时,7S749,故nSn的最小值为49.答案49反思感悟

13、 (1)本题求出的nSn的表达式可以看做是一个定义在正整数集N*上的三次函数,因此可以采用导数法求解(2)易错分析:由于n为正整数,因而不能将代入求最值,这是考生容易忽略而产生错误的地方【自主体验】1设an3n215n18,则数列an中的最大项的值是()A. B. C4 D0解析an32,由二次函数性质,得当n2或3时,an最大,最大为0.答案D2已知an是递增数列,且对于任意的nN*,ann2n恒成立,则实数的取值范围是_解析设f(n)ann2n,其图象的对称轴为直线n,要使数列an为递增数列,只需使定义在正整数上的函数f(n)为增函数,故只需满足,即3.答案(3,)对应学生用书P285基础

14、巩固题组(建议用时:40分钟)一、选择题1(2014深圳中学模拟)数列0,的一个通项公式为()Aan(nN*) Ban(nN*) Can(nN*) Dan(nN*)解析将0写成,观察数列中每一项的分子、分母可知,分子为偶数列,可表示为2(n1),nN*;分母为奇数列,可表示为2n1,nN*,故选C.答案C2若Sn为数列an的前n项和,且Sn,则()A. B. C. D30解析当n2时,anSnSn1,5(51)30.答案D3(2014贵阳模拟)已知数列an的前n项和为Sn,且Sn2n21,则a3()A10 B6 C10 D14解析a3S3S22321(2221)10.答案C4已知a11,ann

15、(an1an)(nN*),则数列an的通项公式是()A2n1 B.n1Cn2 Dn解析法一(构造法)由已知整理得(n1)annan1,数列是常数列且1,ann.法二(累乘法):n2时,.,两边分别相乘得n,又因为a11,ann.答案D5已知数列an的前n项和为Sn,a11,Sn2an1,则Sn()A2n1 B.n1 C.n1 D.解析Sn2an1,当n2时,Sn12an,anSnSn12an12an(n2),即(n2),又a2,ann2(n2)当n1时,a111,anSn2an12n1n1.答案B二、填空题6(2013蚌埠模拟)数列an的通项公式ann210n11,则该数列前_项的和最大解析易

16、知a1200,显然要想使和最大,则应把所有的非负项求和即可,令an0,则n210n110,1n11,可见,当n11时,a110,故a10是最后一个正项,a110,故前10或11项和最大答案10或117(2014广州模拟)设数列an满足a13a232a33n1an,则数列an的通项公式为_解析a13a232a33n1an,则当n2时,a13a232a33n2an1,两式左右两边分别相减得3n1an,an(n2)由题意知,a1,符合上式,an(nN*)答案an8(2013淄博二模)在如图所示的数阵中,第9行的第2个数为_解析每行的第二个数构成一个数列an,由题意知a23,a36,a411,a518

17、,所以a3a23,a4a35,a5a47,anan12(n1)12n3,等式两边同时相加得ana2n22n,所以ann22na2n22n3(n2),所以a99229366.答案66三、解答题9数列an的通项公式是ann27n6.(1)这个数列的第4项是多少?(2)150是不是这个数列的项?若是这个数列的项,它是第几项?(3)该数列从第几项开始各项都是正数?解(1)当n4时,a4424766.(2)令an150,即n27n6150,解得n16或n9(舍去),即150是这个数列的第16项(3)令ann27n60,解得n6或n1(舍)从第7项起各项都是正数10在数列an中,a11,Sn为其前n项和,

18、且an12Snn2n1.(1)设bnan1an,求数列bn的前n项和Tn;(2)求数列an的通项公式解(1)an12Snn2n1,an2Sn1(n1)2(n1)1(n2),两式相减得,an1an2an2n2(n2)由已知可得a23,n1时上式也成立an13an2n2(nN*),an3an12(n1)2(n2)两式相减,得(an1an)3(anan1)2(n2)bnan1an,bn3bn12(n2),bn13(bn11)(n2)b1130,bn1是以3为公比,3为首项的等比数列,bn133n13n,bn3n1.Tn31323nn3n1n.(2)由(1)知,an1an3n1,an(anan1)(a

19、n1an2)(an2an3)(a3a2)(a2a1)a13031323n1(n1)(3n1)n.能力提升题组(建议用时:25分钟)一、选择题1已知数列an的通项公式为an,则满足an1an的n的取值为()A3 B4 C5 D6解析由an1an,得an1an0,解得n,又nN*,n5.答案C2(2014湖州模拟)设函数f(x)数列an满足anf(n),nN*,且数列an是递增数列,则实数a的取值范围是()A. B. C(1,3) D(2,3)解析数列an是递增数列,又anf(n)(nN*),2aa1.综上,所求的a的取值范围是9,).学生用书第81页第2讲等差数列及其前n项和最新考纲1理解等差数

20、列的概念2掌握等差数列的通项公式与前n项和公式3能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题4了解等差数列与一次函数、二次函数的关系.知 识 梳 理1等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示数学语言表达式:an1and(nN*),d为常数2等差数列的通项公式与前n项和公式(1)若等差数列an的首项是a1,公差是d,则其通项公式为ana1(n1)d.若等差数列an的第m项为am,则其第n项an可以表示为anam(nm)d.(2)等差数列的前n项和公式Snna1d

21、.(其中nN*,a1为首项,d为公差,an为第n项)3等差数列及前n项和的性质(1)若a,A,b成等差数列,则A叫做a,b的等差中项,且A.(2)若an为等差数列,当mnpq,amanapaq(m,n,p,qN*)(3)若an是等差数列,公差为d,则ak,akm,ak2m,(k,mN*)是公差为md的等差数列(4)数列Sm,S2mSm,S3mS2m,也是等差数列(5)S2n1(2n1)an.(6)若n为偶数,则S偶S奇;若n为奇数,则S奇S偶a中(中间项)4等差数列与函数的关系(1)等差数列与一次函数的区别与联系等差数列一次函数解析式anknb(nN*)f(x)kxb(k0)不同点定义域为N*

22、,图象是一系列孤立的点(在直线上),k为公差定义域为R,图象是一条直线,k为斜率相同点数列的通项公式与函数解析式都是关于自变量的一次函数k0时,数列anknb(nN*)图象所表示的点均匀分布在函数f(x)kxb(k0)的图象上;k0时,数列为递增数列,函数为增函数;k0时,数列为递减数列,函数为减函数(2)等差数列前n项和公式可变形为Snn2n,当d0时,它是关于n的二次函数,它的图象是抛物线yx2x上横坐标为正整数的均匀分布的一群孤立的点辨 析 感 悟1对等差数列概念的理解(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列()(2)等差数列的公差是相邻两项的差()

23、(3)(教材习题改编)数列an为等差数列的充要条件是其通项公式为n的一次函数()2等差数列的通项公式与前n项和(4)数列an为等差数列的充要条件是对任意nN*,都有2an1anan2.()(5)等差数列an的单调性是由公差d决定的()(6)等差数列的前n项和公式是常数项为0的二次函数()3等差数列性质的活用(7)(2013广东卷改编)在等差数列an中,已知a3a810,则3a5a720.()(8)(2013辽宁卷改编)已知关于d0的等差数列an,则数列an,nan,an3nd都是递增数列()感悟提升一点注意等差数列概念中的“从第2项起”与“同一个常数”的重要性,如(1)、(2)等差数列与函数的

24、区别一是当公差d0时,等差数列的通项公式是n的一次函数,当公差d0时,an为常数,如(3);二是公差不为0的等差数列的前n项和公式是n的二次函数,且常数项为0;三是等差数列an的单调性是由公差d决定的,如(8)中若an3n12,则满足已知,但nan3n212n并非递增;若ann1,则满足已知,但1是递减数列;设ana1(n1)ddnm,则an3nd4dnm是递增数列.学生用书第82页考点一等差数列的基本量的求解【例1】 在等差数列an中,a11,a33.(1)求数列an的通项公式;(2)若数列an的前k项和Sk35,求k的值解(1)设等差数列an的公差为d,则ana1(n1)d.由a11,a3

25、3,可得12d3.解得d2.从而,an1(n1)(2)32n.(2)由(1)可知an32n.所以Sn2nn2.进而由Sk35可得2kk235.即k22k350,解得k7或5.又kN*,故k7为所求规律方法 (1)等差数列的通项公式及前n项和公式,共涉及五个量a1,an,d,n,Sn,知其中三个就能求另外两个,体现了用方程的思想解决问题(2)数列的通项公式和前n项和公式在解题中起到变量代换作用,而a1和d是等差数列的两个基本量,用它们表示已知和未知是常用方法【训练1】 (1)(2013浙江五校联考)已知等差数列an满足a2a44,a3a510,则它的前10项的和S10()A85 B135 C95

26、 D23(2)(2013新课标全国卷)设等差数列an的前n项和为Sn,若Sm12,Sm0,Sm13,则m()A3 B4 C5 D6解析(1)设等差数列an的首项为a1,公差为d,则解得S1010(4)395.(2)法一Sm12,Sm0,Sm13,amSmSm12,am1Sm1Sm3,公差dam1am1,由Snna1dna1,得由得a1,代入可得m5. 法二数列an为等差数列,且前n项和为Sn,数列也为等差数列,即0,解得m5.经检验为原方程的解故选C.答案(1)C(2)C考点二等差数列的判定与证明【例2】 (2014梅州调研改编)若数列an的前n项和为Sn,且满足an2SnSn10(n2),a

27、1.(1)求证:成等差数列;(2)求数列an的通项公式审题路线(1)利用anSnSn1(n2)转化为关于Sn与Sn1的式子同除SnSn1利用定义证明得出结论(2)由(1)求再求Sn再代入条件an2SnSn1,求an验证n1的情况得出结论(1)证明当n2时,由an2SnSn10,得SnSn12SnSn1,所以2,又2,故是首项为2,公差为2的等差数列(2)解由(1)可得2n,Sn.当n2时,anSnSn1.当n1时,a1不适合上式故an规律方法 证明一个数列是否为等差数列的基本方法有两种:一是定义法,证明anan1d(n2,d为常数);二是等差中项法,证明2an1anan2.若证明一个数列不是等

28、差数列,则只需举出反例即可,也可以用反证法【训练2】 已知数列an满足:a12,an13an3n12n.设bn.证明:数列bn为等差数列,并求an的通项公式证明bn1bn1,bn为等差数列,又b10.bnn1,an(n1)3n2n.学生用书第83页考点三等差数列的性质及应用【例3】 (1)设Sn为等差数列an的前n项和,S84a3,a72,则a9()A6 B4 C2 D2(2)在等差数列an中,前m项的和为30,前2m项的和为100,则前3m项的和为_解析(1)S84a34a3a3a6a3,a60,d2,a9a72d246.(2)记数列an的前n项和为Sn,由等差数列前n项和的性质知Sm,S2

29、mSm,S3mS2m成等差数列,则2(S2mSm)Sm(S3mS2m),又Sm30,S2m100,S2mSm1003070,所以S3mS2m2(S2mSm)Sm110,所以S3m110100210.答案(1)A(2)210规律方法 巧妙运用等差数列的性质,可化繁为简;若奇数个数成等差数列且和为定值时,可设中间三项为ad,a,ad;若偶数个数成等差数列且和为定值时,可设中间两项为a d,ad,其余各项再依据等差数列的定义进行对称设元【训练3】 (1)在等差数列an中若共有n项,且前四项之和为21,后四项之和为67,前n项和Sn286,则n_.(2)已知等差数列an中,S39,S636,则a7a8

30、a9_.解析(1)依题意知a1a2a3a421,anan1an2an367.由等差数列的性质知a1ana2an1a3an2a4an3,4(a1an)88,a1an22.又Sn,即286,n26.(2)an为等差数列,S3,S6S3,S9S6成等差数列,2(S6S3)S3(S9S6)a7a8a9S9S62(S6S3)S32(369)945.答案(1)26(2)45 1等差数列的判断方法(1)定义法:an1and(d是常数)an是等差数列(2)等差中项法:2an1anan2(nN*)an是等差数列(3)通项公式:anpnq(p,q为常数)an是等差数列(4)前n项和公式:SnAn2Bn(A、B为常

31、数)an是等差数列2方程思想和化归思想:在解有关等差数列的问题时可以考虑化归为a1和d等基本量,通过建立方程(组)获得解 方法优化4整体代入法(整体相消法)在数列解题中的应用【典例】 (1)(2012辽宁卷)在等差数列an中,已知a4a816,则该数列前11项和S11()A58 B88 C143 D176(2)(2013北京卷)若等比数列an满足:a2a420,a3a540,则公比q_;前n项和Sn_.一般解法 (1)设数列an的公差为d,则a4a816,即a13da17d16,即a185d,所以S1111a1d11(85d)55d8855d55d88.(2)由a2a420,a3a540,得即

32、解得q2,a12,Sn2n12.优美解法 (1)由a1a11a4a816,得S1188.(2)由已知,得q2,又a12,所以Sn2n12.反思感悟 整体代入法是一种重要的解题方法和技巧,简化了解题过程,节省了时间,这就要求学生要掌握公式,理解其结构特征【自主体验】在等差数列an中,已知Snm,Smn(mn),则Smn_.解析设an的公差为d,则由Snm,Smn,得得(mn)a1dnm,mn,a1d1.Smn(mn)a1d(mn)(mn)答案(mn)对应学生用书P287基础巩固题组(建议用时:40分钟)一、选择题1(2013温州二模)记Sn为等差数列an前n项和,若1,则其公差d()A. B2

33、C3 D4解析由1,得1,即a1d1,d2.答案B2(2014潍坊期末考试)在等差数列an中,a5a6a715,那么a3a4a9等于()A21 B30 C35 D40解析由题意得3a615,a65.所以a3a4a97a67535.答案C3(2013揭阳二模)在等差数列an中,首项a10,公差d0,若ama1a2a9,则m的值为()A37 B36 C20 D19解析由ama1a2a9,得(m1)d9a536dm37.答案A4(2014郑州模拟)an为等差数列,Sn为其前n项和,已知a75,S721,则S10()A40 B35 C30 D28解析设公差为d,则由已知得S7,即21,解得a11,所以

34、a7a16d,所以d.所以S1010a1d1040.答案A5(2013淄博二模)已知等差数列an的前n项和为Sn,满足a13S1313,则a1()A14 B13 C12 D11解析在等差数列中,S1313,所以a1a132,即a12a1321311.答案D二、填空题6(2013肇庆二模)在等差数列an中,a1533,a2566,则a35_.解析a25a1510d663333,a35a2510d663399.答案997(2014成都模拟)已知等差数列an的首项a11,前三项之和S39,则an的通项an_.解析由a11,S39,得a1a2a39,即3a13d9,解得d2,an1(n1)22n1.答

35、案2n18(2013浙江五校联考)若等差数列an的前n项和为Sn(nN*),若a2a352,则S3S5_.解析.答案32三、解答题9已知等差数列an的公差d1,前n项和为Sn.(1)若1,a1,a3成等比数列,求a1;(2)若S5a1a9,求a1的取值范围解(1)因为数列an的公差d1,且1,a1,a3成等比数列,所以a1(a12),即aa120,解得a11或2.(2)因为数列an的公差d1,且S5a1a9,所以5a110a8a1,即a3a1100,解得5a12.故a1的取值范围是(5,2)10设数列an的前n项和为Sn,a11,an2(n1)(nN*)(1)求证:数列an为等差数列,并求an

36、与Sn.(2)是否存在自然数n,使得S1(n1)22 015?若存在,求出n的值;若不存在,请说明理由证明(1)由an2(n1),得Snnan2n(n1)(nN*)当n2时,anSnSn1nan(n1)an14(n1),即anan14,故数列an是以1为首项,4为公差的等差数列于是,an4n3,Sn2n2n(nN*)(2)由(1),得2n1(nN*),又S1(n1)21357(2n1)(n1)2n2(n1)22n1.令2n12 015,得n1 008,即存在满足条件的自然数n1 008.能力提升题组(建议用时:25分钟)一、选择题1(2014咸阳模拟)已知等差数列an的前n项和为Sn,S440

37、,Sn210,Sn4130,则n()A12 B14 C16 D18解析SnSn4anan1an2an380,S4a1a2a3a440,所以4(a1an)120,a1an30,由Sn210,得n14.答案B2等差数列an的前n项和为Sn,已知a113,S3S11,当Sn最大时,n的值是()A5 B6 C7 D8解析法一由S3S11,得a4a5a110,根据等差数列的性质,可得a7a80,根据首项等于13可推知这个数列递减,从而得到a70,a80,故n7时,Sn最大法二由S3S11,可得3a13d11a155d,把a113代入,得d2,故Sn13nn(n1)n214n,根据二次函数的性质,知当n7

38、时,Sn最大法三根据a113,S3S11,则这个数列的公差不等于零,且这个数列的和先是单调递增然后又单调递减,根据公差不为零的等差数列的前n项和是关于n的二次函数,以及二次函数图象的对称性,得只有当n7时,Sn取得最大值答案C二、填空题3(2014九江一模)正项数列an满足:a11,a22,2aaa(nN*,n2),则a7_.解析因为2aaa(nN*,n2),所以数列a是以a1为首项,以daa413为公差的等差数列,所以a13(n1)3n2,所以an,n1.所以a7.答案三、解答题4(2013西安模拟)已知公差大于零的等差数列an的前n项和为Sn,且满足a3a4117,a2a522.(1)求数

39、列an的通项公式;(2)若数列bn满足bn,是否存在非零实数c使得bn为等差数列?若存在,求出c的值;若不存在,请说明理由解(1)设等差数列an的公差为d,且d0,由等差数列的性质,得a2a5a3a422,所以a3,a4是关于x 的方程x222x1170的解,所以a39,a413,易知a11,d4,故通项为an1(n1)44n3.(2)由(1)知Sn2n2n,所以bn.法一所以b1,b2,b3(c0)令2b2b1b3,解得c.当c时,bn2n,当n2时,bnbn12.故当c时,数列bn为等差数列法二由bn,c0,可令c,得到bn2n.bn1bn2(n1)2n2(nN*),数列bn是公差为2的等

40、差数列即存在一个非零常数c,使数列bn也为等差数列.学生用书第84页第3讲等比数列及其前n项和最新考纲1理解等比数列的概念,掌握等比数列的通项公式及前n项和公式2能在具体的问题情境中识别数列的等比关系,并能用有关知识解决相应的问题3了解等比数列与指数函数的关系.知 识 梳 理1等比数列的有关概念(1)等比数列的定义如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q(q0)表示数学语言表达式:q(n2),q为常数(2)等比中项如果a,G,b成等比数列,那么G叫做a与b的等比中项即:G是a与b的等比中项a,G,b

41、成等比数列G2ab.2等比数列的通项公式及前n项和公式(1)若等比数列an的首项为a1,公比是q,则其通项公式为ana1qn1;若等比数列an的第m项为am,公比是q,则其第n项an可以表示为anamqnm.(2)等比数列的前n项和公式:当q1时,Snna1;当q1时,Sn.3等比数列及前n项和的性质(1)若an为等比数列,且klmn(k,l,m,nN*),则akalaman.(2)相隔等距离的项组成的数列仍是等比数列,即ak,akm,ak2m,仍是等比数列,公比为qm.(3)当q1,或q1且n为奇数时,Sn,S2nSn,S3nS2n仍成等比数列,其公比为qn.(4)若an,bn(项数相同)是

42、等比数列,则an(0),a,anbn,仍是等比数列辨 析 感 悟1对等比数列概念的理解(1)若一个数列从第2项起每一项与它的前一项的比都是常数,则这个数列是等比数列()(2)三个数a,b,c成等比数列的充要条件是b2ac.()(3)若三个数成等比数列,那么这三个数可以设为,a,aq.()2通项公式与前n项和的关系(4)数列an的通项公式是anan,则其前n项和为Sn.()(5)(2013新课标全国卷改编)设首项为1,公比为的等比数列an的前n项和为Sn,则Sn32an.()3等比数列性质的活用(6)如果数列an为等比数列,则数列ln an是等差数列()(7)(2014兰州模拟改编)在等比数列a

43、n中,已知a7a125,则a8a9a10a1125.()(8)(2013江西卷改编)等比数列x,3x3,6x6,的第四项等于2或0.()感悟提升1一个区别等差数列的首项和公差可以为零,且等差中项唯一;而等比数列首项和公比均不为零,等比中项可以有两个值如(1)中的“常数”,应为“同一非零常数”;(2)中,若b2ac,则不能推出a,b,c成等比数列,因为a,b,c为0时,不成立2两个防范一是在运用等比数列的前n项和公式时,必须注意对q1或q1分类讨论,防止因忽略q1这一特殊情形而导致解题失误,如(4)二是运用等比数列的性质时,注意条件的限制,如(6)中当q0时,ln an1ln anln q无意义

44、.学生用书第85页考点一等比数列的判定与证明【例1】 (2013济宁测试)设数列an的前n项和为Sn,若对于任意的正整数n都有Sn2an3n,设bnan3.求证:数列bn是等比数列,并求an.证明由Sn2an3n对于任意的正整数都成立,得Sn12an13(n1),两式相减,得Sn1Sn2an13(n1)2an3n,所以an12an12an3,即an12an3,所以an132(an3),即2对一切正整数都成立,所以数列bn是等比数列由已知得:S12a13,即a12a13,所以a13,所以b1a136,即bn62n1.故an62n1332n3.规律方法 证明数列an是等比数列常用的方法:一是定义法

45、,证明q(n2,q为常数);二是等比中项法,证明aan1an1.若判断一个数列不是等比数列,则只需举出反例即可,也可以用反证法【训练1】 (2013陕西卷)设an是公比为q的等比数列(1)推导an的前n项和公式;(2)设q1,证明数列an1不是等比数列解(1)设an的前n项和为Sn,当q1时,Sna1a1a1na1;当q1时,Sna1a1qa1q2a1qn1,qSna1qa1q2a1qn,得,(1q)Sna1a1qn,Sn,Sn(2)假设an1是等比数列,则对任意的kN*,(ak11)2(ak1)(ak21),a2ak11akak2akak21,aq2k2a1qka1qk1a1qk1a1qk1

46、a1qk1,a10,2qkqk1qk1.q0,q22q10,q1,这与已知矛盾假设不成立,an1不是等比数列考点二等比数列基本量的求解【例2】 (2013湖北卷)已知等比数列an满足:|a2a3|10,a1a2a3125.(1)求数列an的通项公式;(2)是否存在正整数m,使得1?若存在,求m的最小值;若不存在,说明理由审题路线(1)建立关于a1与q的方程组可求解(2)分两种情况,由an再用等比数列求和求得到结论解(1)设等比数列an的公比为q,则由已知可得解得或故an3n1或an5(1)n1.(2)若an3n1,则n1,则是首项为,公比为的等比数列从而1.若an5(1)n1,则(1)n1,故

47、是首项为,公比为1的等比数列,从而故1.综上,对任何正整数m,总有a1a2an的最大正整数n的值为_解析由已知条件得qq23,即q2q60,解得q2或q3(舍去),ana5qn52n52n6,a1a2an(2n1),a1a2an2524232n6,由a1a2ana1a2an,可知2n525,可求得n的最大值为12,而当n13时,2825213,所以n的最大值为12.答案12三、解答题4已知首项为的等比数列an不是递减数列,其前n项和为Sn(nN*),且S3a3,S5a5,S4a4成等差数列(1)求数列an的通项公式;(2)设TnSn(nN*),求数列Tn的最大项的值与最小项的值解(1)设等比数

48、列an的公比为q,因为S3a3,S5a5,S4a4成等差数列,所以S5a5S3a3S4a4S5a5,即4a5a3,于是q2.又an不是递减数列且a1,所以q.故等比数列an的通项公式为ann1(1)n1.(2)由(1)得Sn1n当n为奇数时,Sn随n的增大而减小,所以1SnS1,故0SnS1.当n为偶数时,Sn随n的增大而增大,所以S2SnSnS2.综上,对于nN*,总有Sn.所以数列Tn最大项的值为,最小项的值为.第4讲数列求和最新考纲1熟练掌握等差、等比数列的前n项和公式2掌握非等差、等比数列求和的几种常见方法. 知 识 梳 理1公式法(1)等差数列的前n项和公式:Snna1d.(2)等比

49、数列的前n项和公式:Sn2数列求和的几种常用方法(1)分组求和法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减(2)裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和(3)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的(4)倒序相加法如果一个数列an的前n项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和可用倒序相加法,如等差数列的前n项和公式即是用此法推导的(5)并

50、项求和法在一个数列的前n项和中,可两两结合求解,则称之为并项求和形如an(1)nf(n)类型,可采用两项合并求解例如,Sn10029929829722212(1002992)(982972)(2212)(10099)(9897)(21)5 050.3常见的拆项公式(1);(2);(3).辨 析 感 悟数列求和的常用方法(1)当n2时,.()(2)求Sna2a23a3nan时只要把上式等号两边同时乘以a即可根据错位相减法求得()(3)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin2 1sin2 2sin2 3sin2 88sin2 8944.5.()(4)(2014南京调研改编)

51、若Sn1234(1)n1n,则S5025.()感悟提升两个防范一是用裂项相消法求和时,注意裂项后的系数以及搞清未消去的项,如(1)二是含有字母的数列求和,常伴随着分类讨论,如(2)中a需要分a0,a1,a1且a0三种情况求和,只有当a1且a0时可用错位相减法求和.学生用书第88页考点一分组转化法求和【例1】 已知数列an的通项公式是an23n1(1)n(ln 2ln 3)(1)nnln 3,求其前n项和Sn.解Sn2(133n1)111(1)n(ln 2ln 3)123(1)nnln 3,所以当n为偶数时,Sn2ln 33nln 31;当n为奇数时,Sn2(ln 2ln 3)ln 33nln

52、3ln 21.综上所述,Sn规律方法 (1)等差数列、等比数列以及由等差数列、等比数列通过加、减构成的数列,它们可以使用等差数列、等比数列的求和公式求解(2)奇数项和偶数项分别构成等差数列或者等比数列的,可以分项数为奇数和偶数时使用等差数列或等比数列的求和公式【训练1】 (2014湖州质检)在等比数列an中,已知a13,公比q1,等差数列bn满足b1a1,b4a2,b13a3.(1)求数列an与bn的通项公式;(2)记cn(1)nbnan,求数列cn的前n项和Sn.解(1)设等比数列an的公比为q,等差数列bn的公差为d.由已知,得a23q,a33q2,b13,b433d,b13312d,故q

53、3或1(舍去)所以d2,所以an3n,bn2n1.(2)由题意,得cn(1)nbnan(1)n(2n1)3n,Snc1c2cn(35)(79)(1)n1(2n1)(1)n(2n1)3323n.当n为偶数时,Snnn;当n为奇数时,Sn(n1)(2n1)n.所以Sn考点二裂项相消法求和【例2】 (2013江西卷)正项数列an的前n项和Sn满足:S(n2n1)Sn(n2n)0.(1)求数列an的通项公式an;(2)令bn,数列bn的前n项和为Tn,证明:对于任意的nN*,都有Tn.解(1)由S(n2n1)Sn(n2n)0,得Sn(n2n)(Sn1)0.由于an是正项数列,所以Sn0,Snn2n.于

54、是a1S12,当n2时,anSnSn1n2n(n1)2(n1)2n.综上,数列an的通项an2n.(2)证明由于an2n,bn,则bn.Tn.规律方法 使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的【训练2】 (2013滨州一模)已知数列an的前n项和是Sn,且Snan1(nN*)(1)求数列an的通项公式;(2)设bnlog(1Sn1)(nN*),令Tn,求Tn.解(1)当n1时,a1S1,由S1a11,得a1,当n2时,Sn1an,Sn11an1,则SnSn1(an1an),即an(

55、an1an),所以anan1(n2)故数列an是以为首项,为公比的等比数列故ann12n(nN*)(2)因为1Snann.所以bnlog(1Sn1)logn1n1,因为,所以Tn.学生用书第89页考点三错位相减法求和【例3】 (2013山东卷)设等差数列an的前n项和为Sn,且S44S2,a2n2an1.(1)求数列an的通项公式;(2)设数列bn的前n项和为Tn,且Tn(为常数),令cnb2n,(nN*),求数列cn的前n项和Rn.解(1)设等差数列an的首项为a1,公差为d.由S44S2,a2n2an1,得解得a11,d2.因此an2n1,nN*.(2)由题意知Tn,所以n2时,bnTnT

56、n1.故cnb2n(n1)()n1,nN*,所以Rn0()01()12()23()3(n1)()n1,则Rn0()11()22()3(n2)()n1(n1)()n,两式相减得Rn()1()2()3()n1(n1)()n(n1)()n()n,整理得Rn(4)所以数列cn的前n项和Rn(4)规律方法 (1)一般地,如果数列an是等差数列,bn是等比数列,求数列anbn的前n项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列bn的公比,然后作差求解(2)在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“SnqSn”的表达式【训练3】 (2013嘉兴二模)在数

57、列an中,a12,an13an2.(1)记bnan1,求证:数列bn为等比数列;(2)求数列nan的前n项和Sn.(1)证明由an13an2,可得an113(an1)因为bnan1,所以bn13bn,又b1a113,所以数列bn是以3为首项,以3为公比的等比数列(2)解由(1)知an13n,an3n1,所以nann3nn,所以Sn(3232n3n)(12n),其中12n,记Tn3232n3n,3Tn32233(n1)3nn3n1,两式相减得2Tn3323nn3n1n3n1,即Tn3n1,所以Sn. 数列求和的方法技巧(1)倒序相加:用于等差数列、与二项式系数相关联的数列的求和(2)错位相减:用

58、于等差数列与等比数列的积数列的求和(3)分组求和:用于若干个等差或等比数列的和或差数列的求和 答题模板7求数列|an|的前n项和问题【典例】 (14分)(2013浙江卷)在公差为d的等差数列an中,已知a110,且a1,2a22,5a3成等比数列(1)求d,an;(2)若d0,求|a1|a2|an|.规范解答 (1)由题意得5a3a1(2a22)2, (2分)即d23d40.故d1或4. (4分)所以ann11,nN*或an4n6,nN* , (6分)(2)设数列an的前n项和为Sn.因为d0,由(1)得d1,ann11.Snn2n,(8分)当n11时,|a1|a2|a3|an|Snn2n.(

59、10分)当n12时,|a1|a2|a3|an|Sn2S11n2n110.(12分)综上所述,|a1|a2|a3|an|反思感悟 (1)本题求解用了分类讨论思想,求数列|an|的和时,因为an有正有负,所以应分两类分别求和(2)常出现的错误:当n11时,求|an|的和,有的学生认为就是S11110;当n12时,求|an|的和,有的学生不能转化为2(a1a2a11)(a1a2an),导致出错答题模板求数列|an|的前n项和一般步骤如下:第一步:求数列an的前n项和;第二步:令an0(或an0)确定分类标准;第三步:分两类分别求前n项和;第四步:用分段函数形式下结论;第五步:反思回顾:查看|an|的

60、前n项和与an的前n项和的关系,以防求错结果【自主体验】已知等差数列an前三项的和为3,前三项的积为8.(1)求等差数列an的通项公式;(2)若a2,a3,a1成等比数列,求数列|an|的前n项和解(1)设等差数列an的公差为d,则a2a1d,a3a12d,由题意,得解得或所以由等差数列的通项公式,可得an23(n1)3n5或an43(n1)3n7.故an3n5或an3n7.(2)由(1),知当an3n5时,a2,a3,a1分别为1,4,2,不成等比数列;当an3n7时,a2,a3,a1分别为1,2,4,成等比数列,满足条件故|an|3n7|记数列|an|的前n项和为Sn.当n1时,S1|a1

61、|4;当n2时,S2|a1|a2|5;当n3时,SnS2|a3|a4|an|5(337)(347)(3n7)5n2n10.当n2时,满足此式综上,Sn基础巩固题组(建议用时:40分钟)一、选择题1等差数列an的通项公式为an2n1,其前n项和为Sn,则数列的前10项的和为()A120 B70 C75 D100解析因为n2,所以的前10项和为10375.答案C2若数列an的通项公式为an2n2n1,则数列an的前n项和为()A2nn21 B2n1n21C2n1n22 D2nn2解析Sn2n12n2.答案C3数列an的前n项和为Sn,已知Sn1234(1)n1n,则S17()A9 B8 C17 D

62、16解析S171234561516171(23)(45)(67)(1415)(1617)11119.答案A4(2014西安质检)已知数列an满足a11,an1an2n(nN*),则S2 012()A22 0121 B321 0063 C321 0061 D321 0052解析a11,a22,又2.2.a1,a3,a5,成等比数列;a2,a4,a6,成等比数列,S2 012a1a2a3a4a5a6a2 011a2 012(a1a3a5a2 011)(a2a4a6a2 012)321 0063.故选B.答案B5(2014杭州模拟)已知函数f(x)x22bx过(1,2)点,若数列的前n项和为Sn,则

63、S2 014的值为()A. B. C. D.解析由已知得b,f(n)n2n,S2 01411.答案D二、填空题6在等比数列an中,若a1,a44,则公比q_;|a1|a2|an|_.解析设等比数列an的公比为q,则a4a1q3,代入数据解得q38,所以q2;等比数列|an|的公比为|q|2,则|an|2n1,所以|a1|a2|a3|an|(12222n1)(2n1)2n1.答案22n17(2013山西晋中名校联合测试)在数列an中,a11,an1(1)n(an1),记Sn为an的前n项和,则S2 013_.解析由a11,an1(1)n(an1)可得a11,a22,a31,a40,该数列是周期为

64、4的数列,所以S2 013503(a1a2a3a4)a2 013503(2)1 1 005.答案1 0058(2014武汉模拟)等比数列an的前n项和Sn2n1,则aaa_.解析当n1时,a1S11,当n2时,anSnSn12n1(2n11)2n1,又a11适合上式an2n1,a4n1.数列a是以a1为首项,以4为公比的等比数列aaa(4n1)答案(4n1)三、解答题9正项数列an满足:a(2n1)an2n0.(1)求数列an的通项公式an;(2)令bn,求数列bn的前n项和Tn.解(1)由a(2n1)an2n0得(an2n)(an1)0,由于an是正项数列,则an2n.(2)由(1)知an2

65、n,故bn,Tn.10(2013烟台期末)已知数列an的前n项和为Sn,且Sn2an2.(1)求数列an的通项公式;(2)记Sna13a2(2n1)an,求Sn.解(1)Sn2an2,当n2时,anSnSn12an2(2an12),即an2an2an1,an0,2(n2,nN*)a1S1,a12a12,即a12.数列an是以2为首项,2为公比的等比数列an2n.(2)Sna13a2(2n1)an12322523(2n1)2n,2Sn122323(2n3)2n(2n1)2n1,得Sn12(22222322n)(2n1)2n1,即Sn12(23242n1)(2n1)2n1Sn(2n3)2n16.能

66、力提升题组(建议用时:25分钟)一、选择题1(2014西安模拟)数列an满足anan1(nN*),且a11,Sn是数列an的前n项和,则S21()A. B6 C10 D11解析依题意得anan1an1an2,则an2an,即数列an中的奇数项、偶数项分别相等,则a21a11,S21(a1a2)(a3a4)(a19a20)a2110(a1a2)a211016,故选B.答案B2(2014长沙模拟)已知函数f(n)n2cosn,且anf(n)f(n1),则a1a2a3a100()A100 B0 C100 D10 200解析若n为偶数,则anf(n)f(n1)n2(n1)2(2n1),为首项为a25,

67、公差为4的等差数列;若n为奇数,则anf(n)f(n1)n2(n1)22n1,为首项为a13,公差为4的等差数列所以a1a2a3a100(a1a3a99)(a2a4a100)503450(5)(4)100.答案A二、填空题3设f(x),利用倒序相加法,可求得fff的值为_解析当x1x21时,f(x1)f(x2)1.设Sfff,倒序相加有2Sff10,即S5.答案5三、解答题4(2014洛阳模拟)在数列an中,a15,a22,记A(n)a1a2an,B(n)a2a3an1,C(n)a3a4an2(nN*),若对于任意nN*,A(n),B(n),C(n)成等差数列(1)求数列an的通项公式;(2)

68、求数列|an|的前n项和解(1)根据题意A(n),B(n),C(n)成等差数列,A(n)C(n)2B(n),整理得an2an1a2a1253,数列an是首项为5,公差为3的等差数列,an53(n1)3n8.(2)|an|记数列|an|的前n项和为Sn.当n2时,Snn;当n3时,Sn7n14,综上,Sn第5讲数列的综合应用最新考纲能在具体的问题情境中识别数列的等差关系或等比关系,并能用相关知识解决相应的问题知 识 梳 理1等差数列和等比数列的综合等差数列中最基本的量是其首项a1和公差d,等比数列中最基本的量是其首项a1和公比q,在等差数列和等比数列的综合问题中就是根据已知的条件建立方程组求解出

69、这两个数列的基本量解决问题的2数列和函数、不等式的综合(1)等差数列的通项公式和前n项和公式是在公差d0的情况下关于n的一次或二次函数(2)等比数列的通项公式和前n项和公式在公比q1的情况下是公比q的指数函数模型(3)数列常与不等式结合,如比较大小、不等式恒成立、求参数范围等,需熟练应用不等式知识解决数列中的相关问题3数列的应用题(1)解决数列应用题的基本步骤是:根据实际问题的要求,识别是等差数列还是等比数列,用数列表示问题的已知;根据等差数列和等比数列的知识以及实际问题的要求建立数学模型;求出数学模型,根据求解结果对实际问题作出结论(2)数列应用题常见模型:等差模型:如果增加(或减少)的量是

70、一个固定量,该模型是等差数列模型,增加(或减少)的量就是公差;等比模型:如果后一个量与前一个量的比是一个固定的数,该模型是等比数列模型,这个固定的数就是公比;递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化时,应考虑是an与an1的递推关系,或前n项和Sn与Sn1之间的递推关系辨 析 感 悟1等差数列与等比数列的综合问题(1)在等差数列an中,首项a1公差d、前n项和Sn、通项an、项数n,这五个元素中只要已知其中的三个,就一定能够求出另外两个()(2)在等比数列an中,首项a1、公比q、前n项和Sn、通项an、项数n,这五个元素中只要已知其中的三个,就一定能够求出另外

71、两个()(3)一个细胞由1个分裂为2个,则经过5次分裂后的细胞总数为63.()(4)(2013重庆卷改编)已知an是等差数列,a11,公差d0,Sn为其前n项和,若a1,a2,a5成等比数列,则S8128.()2增长率与存贷款利息问题(5)某厂生产总值月平均增长率为q,则年平均增长率为12q.()(6)采用单利计息与复利计息的利息都一样()感悟提升1一个区别“单利计息”与“复利计息”单利计息属于等差数列模型,复利计息属于等比数列模型复利也就是通常说的“利滚利”计算本利和的公式是本利和本金(1利率)存期,如(6)2一个防范数列的实际应用问题,要学会建模,对应哪一类数列,进而求解,如(3)、(5)

72、.学生用书第91页考点一等差、等比数列的综合问题【例1】 已知等差数列an的公差不为零,a125,且a1,a11,a13成等比数列(1)求an的通项公式;(2)求a1a4a7a3n2.解(1)设an的公差为d.由题意,得aa1a13,即(a110d)2a1(a112d)于是d(2a125d)0.又a125,所以d2或0(舍去)故an2n27.(2)令Sna1a4a7a3n2.由(1)知a3n26n31,故a3n2是首项为25,公差为6的等差数列从而Sn(a1a3n2)(6n56)3n228n.规律方法 对等差、等比数列的综合问题的分析,应重点分析等差、等比数列的通项及前n项和;分析等差、等比数

73、列项之间的关系往往用到转化与化归的思想方法【训练1】 (2014昆明模拟)已知数列an是公差为2的等差数列,它的前n项和为Sn,且a11,a31,a71成等比数列(1)求an的通项公式;(2)求数列的前n项和Tn.解(1)由题意,得a31a15,a71a113,所以由(a31)2(a11)(a71)得(a15)2(a11)(a113)解得a13,所以an32(n1),即an2n1.(2)由(1)知an2n1,则Snn(n2),Tn.考点二数列在实际问题中的应用【例2】 (2012湖南卷)某公司一下属企业从事某种高科技产品的生产该企业第一年年初有资金2 000万元,将其投入生产,到当年年底资金增

74、长了50%.预计以后每年资金年增长率与第一年的相同公司要求企业从第一年开始,每年年底上缴资金d万元,并将剩余资金全部投入下一年生产设第n年年底企业上缴资金后的剩余资金为an万元(1)用d表示a1,a2,并写出an1与an的关系式;(2)若公司希望经过m(m3)年使企业的剩余资金为4 000万元,试确定企业每年上缴资金d的值(用m表示)解(1)由题意,得a12 000(150%)d3 000d,a2a1(150%)da1d4 500d,an1an(150%)dand.(2)由(1),得anan1dd2an2ddn1a1d.整理,得ann1(3 000d)2dn1(3 0003d)2d.由题意,得

75、am4 000,即m1(3 0003d)2d4 000.解得d.故该企业每年上缴资金d的值为时,经过m(m3)年企业的剩余资金为4 000万元规律方法 用数列知识解相关的实际问题,关键是列出相关信息,合理建立数学模型数列模型,判断是等差数列还是等比数列模型;求解时,要明确目标,即搞清是求和、求通项、还是解递推关系问题,所求结论对应的是解方程问题、解不等式问题、还是最值问题,然后经过数学推理与计算得出的结果,放回到实际问题中进行检验,最终得出结论【训练2】 (2013安徽卷)如图,互不相同的点A1,A2,An,和B1,B2,Bn,分别在角O的两条边上,所有AnBn相互平行,且所有梯形AnBnBn

76、1An1的面积均相等设OAnan.若a11,a22,则数列an的通项公式是_解析记OA1B1的面积为S,则OA2B2的面积为4S.从而四边形AnBnBn1An1的面积均为3S.即得OAnBn的面积为S3(n1)S(3n2)S.由OA1B1OAnBn,即,an.答案an考点三数列与函数、不等式的综合应用【例3】 设数列an满足a12,a2a48,且对任意nN*,函数f(x)(anan1an2)xan1cos xan2sin x满足f0.(1)求数列an的通项公式;(2)若bn,求数列bn的前n项和Sn.审题路线(1)求f(x)由f0得an、an1、an2的关系式可推出数列an为等差数列根据条件求

77、公差d得出通项an.(2)由(1)知bn分组求和得出前n项和Sn.解(1)由题设可得,对任意nN*,f(x)anan1an2an1sin xan2cos x.fanan1an2an10,即an1anan2an1,故an为等差数列由a12,a2a48,解得数列an的公差d1,所以an21(n1)n1.(2)由bn22n2,知Snb1b2bn2n2n23n1.规律方法 解决数列与函数、不等式的综合问题的关键是从题设中提炼出数列的基本条件,综合函数与不等式的知识求解;数列是特殊的函数,以数列为背景的不等式证明问题及以函数为背景的数列的综合问题体现了在知识交汇点上命题的特点【训练3】 (2014浙江五

78、校联考)已知正项数列an的首项a11,前n项和Sn满足an(n2)(1)求证:为等差数列,并求数列an的通项公式;(2)记数列的前n项和为Tn,若对任意的nN*,不等式4Tna2a恒成立,求实数a的取值范围解(1)因为an,所以SnSn1,即1,所以数列是首项为1,公差为1的等差数列,得n,所以ann(n1)2n1(n2),当n1时,a11也适合,所以an2n1.(2)因为,所以,Tn.Tn,要使不等式4Tna2a恒成立,只需2a2a恒成立,解得a1或a2,故实数a的取值范围是(,12,) 1用好等差数列和等比数列的性质可以降低运算量,减少差错2理解等差数列、等比数列定义、基本量的含义和应用,

79、体会两者解题中的区别3注意数列与函数、方程、三角、不等式等知识的融合,了解其中蕴含的数学思想4在现实生活中,人口的增长、产量的增加、成本的降低、存贷款利息的计算、分期付款问题等,都可以利用数列来解决,因此要会在实际问题中抽象出数学模型,并用它解决实际问题 创新突破6数列中的新定义问题【典例】 (2012湖北卷)定义在(,0)(0,)上的函数f(x),如果对于任意给定的等比数列an,f(an)仍是等比数列,则称f(x)为“保等比数列函数”现有定义在(,0)(0,)上的如下函数;f(x)x2;f(x)2x;f(x);f(x)ln |x|.则其中是“保等比数列函数”的f(x)的序号为()A BC D

80、突破1:采用特殊化思想,选定an是关键突破2:逐一验证解析利用特殊化思想,选an2n判定不妨令an2n.因为f(x)x2,所以f(an)4n.显然f(2n)是首项为4,公比为4的等比数列因为f(x)2x,所以f(a1)f(2)22,f(a2)f(4)24,f(a3)f(8)28,所以416,所以f(an)不是等比数列因为f(x),所以f(an)()n.显然f(an)是首项为,公比为的等比数列因为f(x)ln|x|,所以f(an)ln 2nnln 2.显然f(an)是首项为ln 2,公差为ln 2的等差数列,故应选C.答案C反思感悟 (1)本题解题的关键是抓住新定义中“对任意给定的等比数列an”

81、这一条件将问题特殊化,即取特殊的等比数列an2n,可将问题迎刃而解(2)对于这类问题,我们首先应弄清问题的本质,然后根据等差数列、等比数列的性质以及解决数列问题时常用的方法即可解决【自主体验】1设Sn为数列an的前n项和,若(nN*)是非零常数,则称该数列为“和等比数列”;若数列cn是首项为2,公差为d(d0)的等差数列,且数列cn是“和等比数列”,则d_.解析由题意可知,数列cn的前n项和为Sn,前2n项和为S2n,所以22.因为数列cn是“和等比数列”,即为非零常数,所以d4.答案42(2014肇庆二模)若把能表示为两个连续偶数的平方差的正整数称为“和平数”,则在1100这100个数中,能

82、称为“和平数”的所有数的和是()A130 B325 C676 D1 300解析设两个连续偶数为2k2和2k(kN*),则(2k2)2(2k)24(2k1),故和平数是4的倍数,但不是8的倍数,故在1100之间,能称为和平数的有41,43,45,47,425,共计13个,其和为413676.答案C对应学生用书P293基础巩固题组(建议用时:40分钟)一、选择题1(2014昆明调研)公比不为1的等比数列an的前n项和为Sn,且3a1,a2,a3成等差数列,若a11,则S4()A20 B0 C7 D40解析记等比数列an的公比为q(q1),依题意有2a23a1a3,2a1q3a1a1q2,即q22q

83、30,(q3)(q1)0,又q1,因此有q3,则S420.答案A2若9,a,1成等差数列,9,m,b,n,1成等比数列,则ab()A15 B15 C15 D10解析由已知得a5,b2(9)(1)9且b1 025的最小n值是()A9 B10 C11 D12解析因为a11,log2an1log2an1(nN*),所以an12an,an2n1,Sn2n1,则满足Sn1 025的最小n值是11.答案C4已知an为等比数列,Sn是它的前n项和若a2a32a1,且a4与2a7的等差中项为,则S5()A35 B33 C31 D29解析设数列an的公比为q,则由等比数列的性质知,a2a3a1a42a1,即a4

84、2.由a4与2a7的等差中项为知,a42a72,a7.q3,即q.a4a1q3a12,a116,S531.答案C5(2014兰州模拟)设yf(x)是一次函数,若f(0)1,且f(1),f(4),f(13)成等比数列,则f(2)f(4)f(2n)等于()An(2n3) Bn(n4) C2n(2n3) D2n(n4)解析由题意可设f(x)kx1(k0),则(4k1)2(k1)(13k1),解得k2,f(2)f(4)f(2n)(221)(241)(22n1)2n23n.答案A二、填空题6(2014绍兴调研)已知实数a1,a2,a3,a4构成公差不为零的等差数列,且a1,a3,a4构成等比数列,则此等

85、比数列的公比等于_解析设公差为d,公比为q.则aa1a4,即(a12d)2a1(a13d),解得a14d,所以q.答案7某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n(nN*)等于_解析每天植树棵数构成等比数列an,其中a12,q2.则Sn2(2n1)100,即2n1102.n6,最少天数n6.答案68(2013山东省实验中学诊断)数列an满足a13,ananan11,An表示an前n项之积,则A2 013_.解析由a13,ananan11,得an1,所以a2,a3,a43,所以an是以3为周期的数列,且a1a2a31,又2 013367

86、1,所以A2 013(1)6711.答案1三、解答题9(2014杭州模拟)设an是公比大于1的等比数列,Sn为数列an的前n项和已知S37,且a13,3a2,a34构成等差数列(1)求数列an的通项公式(2)令bnnan,n1,2,求数列bn的前n项和Tn.解(1)由已知,得解得a22.设数列an的公比为q,由a22,可得a1,a32q.又S37,可知22q7,即2q25q20,解得q2或.由题意得q1,所以q2.则a11.故数列an的通项为an2n1.(2)由于bnn2n1,n1,2,则Tn122322n2n1,所以2Tn2222(n1)2n1n2n,两式相减得Tn1222232n1n2n2

87、nn2n1,即Tn(n1)2n1.10(2013湛江二模)已知函数f(x)x22x4,数列an是公差为d的等差数列,若a1f(d1),a3f(d1),(1)求数列an的通项公式;(2)Sn为an的前n项和,求证:.(1)解a1f(d1)d24d7,a3f(d1)d23,又由a3a12d,可得d2,所以a13,an2n1.(2)证明Snn(n2),所以,.能力提升题组(建议用时:25分钟)一、选择题1(2014福州模拟)在等差数列an中,满足3a47a7,且a10,Sn是数列an前n项的和,若Sn取得最大值,则n()A7 B8 C9 D10解析设公差为d,由题设3(a13d)7(a16d),所以

88、da10,即a1(n1)0,所以n0,同理可得n10时,an0.故当n9时,Sn取得最大值答案C2已知f(x)bx1是关于x的一次函数,b为不等于1的常数,且g(n)设ang(n)g(n1)(nN*),则数列an为() A等差数列 B等比数列C递增数列 D递减数列解析a1g(1)g(0)fg(0)g(0)b11b,当n2时,ang(n)g(n1)fg(n1)fg(n2)bg(n1)g(n2)ban1,所以an是等比数列答案B二、填空题3(2013湖南卷)设Sn为数列an的前n项和,Sn(1)nan,nN*,则(1)a3_;(2)S1S2S100_.解析(1)当n1时,S1(1)a1,得a1.当

89、n2时,Sn(1)n(SnSn1).当n为偶数时,Sn1,当n为奇数时,SnSn1,从而S1,S3,又由S3S2,得S20,则S3S2a3a3.(2)由(1)得S1S3S5S99,S101,又S2S4S6S1002S32S52S72S1010,故S1S2S100.答案(1)(2)三、解答题4已知等比数列an满足2a1a33a2,且a32是a2,a4的等差中项(1)求数列an的通项公式;(2)若bnanlog2,Snb1b2bn,求使Sn2n1470成立的n的最小值解(1)设等比数列an的公比为q,依题意,有即由得q23q20,解得q1或q2.当q1时,不合题意,舍去;当q2时,代入得a12,所

90、以an22n12n.故所求数列an的通项公式an2n(nN*)(2)bnanlog22nlog22nn.所以Sn212222332nn(222232n)(123n)2n12nn2.因为Sn2n1470,所以2n12nn22n1470,解得n9或n10.因为nN*,故使Sn2n1470)的等比数列an的前n项和为Sn.若S23a22,S43a42,则q()A. B. C. D2解析S4S2a3a43(a4a2),a2(qq2)3a2(q21),q或1(舍去)答案A4(2013宜山模拟)已知在正项等比数列an中,a11,a2a416,则|a112|a212|a812|()A224 B225 C22

91、6 D256解析由a2a4a16,解得a34,又a11,q24,q2,an2n1,令2n112,解得n的最小值为5.|a112|a212|a812|12a112a212a312a4a512a612a712a812(a1a2a3a4)(a5a6a7a8)15240225.答案B5(2014陕西五校一模)如果数列a1,是首项为1,公比为的等比数列,则a5等于()A32 B64 C32 D64解析易知数列a1,的通项为()n1,故a5a11()2(2)432.答案A6(2013安徽望江中学模拟)设数列an是公差d0的等差数列,Sn为其前n项和,若S65a110d,则Sn取最大值时,n()A5 B6

92、C5或6 D6或7解析由题意得S66a115d5a110d,所以a15d0,即a60,故当n5或6时,Sn最大答案C7(2013荆门调研)已知一等差数列的前四项和为124,后四项和为156,各项和为210,则此等差数列的项数是()A5 B6 C7 D8解析设数列an为该等差数列,依题意得a1an70.Sn210,210,n6.答案B8(2013河南三市调研)在公差不为0的等差数列an中,2a3a2a110,数列bn是等比数列,且b7a7,则b6b8()A2 B4 C8 D16解析因为an是等差数列,所以a3a112a7,所以2a3a2a114a7a0,解得a70或4,因为bn为等比数列,所以b

93、n0,所以b7a74,b6b8b16.答案D9(2013西安五校联考)已知a1,a2, a3,a4是各项均为正数的等比数列,且公比q1,若将此数列删去某一项得到的数列(按原来的顺序)是等差数列,则q()A.或 B. C. D1解析由题意知a10,q0,若删去a1,得2a1q2a1qa1q3,解得q1(舍去);若删去a2,得2a1q2a1a1q3,即(q1)(q2q1)0,解得q;若删去a3,得2a1qa1a1q3,即(q1)(q2q1)0,解得q;若删去a4,得2a1qa1a1q2,解得q1(舍去),综上可得q或q.答案A10(2014皖南八校模拟)已知函数yanx2(an0,nN*)的图象在

94、x1处的切线斜率为2an11(n2,nN*),且当n1时其图象过点(2,8),则a7的值为()A. B7 C5 D6解析由题意知y2anx,2an2an11(n2,nN*),anan1,又n1时其图象过点(2,8),a1228,得a12,an是首项为2,公差为的等差数列,an,得a75.答案C二、填空题11(2014成都重点中学期末考试)设等差数列an的前n项和为Sn,若S48,S820,则a11a12a13a14_.解析设等差数列an的公差为d,依题意有即解得d,a1,故a11a12a13a144a146d18.答案1812已知等比数列an为递增数列若a10,且2(anan2)5an1,则数

95、列an的公比q_.解析2(anan2)5an1,2an2anq25anq,化简得2q25q20,由题意知,q1.q2.答案213(2014成都一模)现有一根n节的竹竿,自上而下每节的长度依次构成等差数列,最上面一节长为10 cm,最下面的三节长度之和为114 cm,第6节的长度是首节与末节长度的等比中项,则n_.解析设每节竹竿的长度对应的数列为an,公差为d,(d0)由题意知a110,anan1an2114,aa1an.由anan1an2114,得3an1114,解得an138,(a15d)2a1(an1d),即(105d)210(38d),解得d2,所以an1a1(n2)d38,即102(n

96、2)38,解得n16.答案1614(2014南通模拟)在数列an中,若aap(n1,nN*,p为常数),则称an为“等方差数列”,下列是对“等方差数列”的判断:若an是等方差数列,则a是等差数列;(1)n是等方差数列;若an是等方差数列,则akn(kN*,k为常数)也是等方差数列其中真命题的序号为_(将所有真命题的序号填在横线上)解析正确,因为aap,所以aap,于是数列a为等差数列正确,因为(1)2n(1)2(n1)0为常数,于是数列(1)n为等方差数列正确,因为aa(aa)(aa)(aa)(aa)kp,则akn(kN*,k为常数)也是等方差数列答案三、解答题15(2014西安一检)设数列a

97、n的前n项和为Sn,满足2Snan12n11,nN*,且a1,a25,a3成等差数列(1)求a1的值;(2)求数列an的通项公式解(1)在2Snan12n11中令n1得,2S1a2221,令n2得,2S2a3231,解得,a22a13,a36a113.又2(a25)a1a3,即2(2a18)a16a113,解得a11.(2)由2Snan12n11,2Sn1an22n21,得an23an12n1.又a11,a25也满足a23a121,an13an2n对nN*成立,an12n13(an2n),数列an2n以3为首项,公比为3的等比数列an2n(a121)3n13n,an3n2n.16(2014浙江

98、五校联考)已知在等比数列an中,a11,且a2是a1和a31的等差中项(1)求数列an的通项公式;(2)若数列bn满足b12b23b3nbnan(nN*),求bn的通项公式bn.解(1)由题意,得2a2a1a31,即2a1qa1a1q21,整理得2qq2.又q0,解得q2,an2n1.(2)当n1时,b1a11;当n2时,nbnanan12n2,即bn,bn17设各项均为正数的数列an的前n项和为Sn,满足4Sna4n1,nN*, 且a2,a5,a14构成等比数列(1)证明:a2;(2)求数列an的通项公式;(3)证明:对一切正整数n,有0,a2.(2)解当n2时,4Sn1a4(n1)1,4a

99、n4Sn4Sn1aa4,即aa4an4(an2)2,又an0,an1an2,当n2时,an是公差为2的等差数列又a2,a5,a14成等比数列aa2a14,即(a26)2a2(a224),解得a23.由(1)知a11.又a2a1312,数列an是首项a11,公差d2的等差数列an2n1.(3)证明.18(2014江西八校联考)已知数列an的首项a14,前n项和为Sn,且Sn13Sn2n40(nN*)(1)求数列an的通项公式;(2)设函数f(x)anxan1x2an2x3a1xn,f(x)是函数f(x)的导函数,令bnf(1),求数列bn的通项公式,并研究其单调性解(1)由Sn13Sn2n40(

100、nN*),得Sn3Sn12n240(n2),两式相减得an13an20,可得an113(an1)(n2),又由已知得a214,所以a213(a11),即an1是一个首项为5,公比q3的等比数列,所以an53n11(nN*)(2)因为f(x)an2an1xna1xn1,所以f(1)an2an1na1(53n11)2(53n21)n(5301)5(3n123n233n3n30),令S3n123n233n3n30,则3S3n23n133n2n31,作差得S,所以f(1),即bn.而bn1,所以bn1bnn0,所以bn是单调递增数列.学生用书第93页知识只能是这样一种东西,学生靠了它可以得到好的分数,可以升级,但是不会变为信念,不会对学生产生深刻的教育影响。只有为此而准备好道德的土壤时,知识才会变成信念。赞科夫

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3