1、京改版八年级数学上册第十章分式章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果关于x的方程有正整数解,且关于x的不等式组的解集为,则符合条件的所有整数a之和为()A4B3C2D12、某农场挖一
2、条480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖米,那么下列方程正确的是()ABCD3、对分式,通分时, 最简公分母是()ABCD4、关于x的分式方程1的解为正数,则字母a的取值范围为()Aa1Ba1Ca1Da15、已知,为实数且满足,设,若时,;若时,;若时,;若,则则上述四个结论正确的有()A1B2C3D46、若a+b=5,则代数式(a)()的值为()A5B5CD7、已知x3是分式方程的解,那么实数k的值为()A1B0C1D28、如果关于x的不等式组所有整数解中非负整数解有且仅有三个,且关于y的分式方程有正整数解,则符合条件的整数m有()个A1B2C
3、3D49、当x2时,分式的值是()A15B3C3D1510、已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为()A8.23106B8.23107C8.23106D8.23107第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知,则的值为_2、计算:_3、方程的解为_4、观察下列各式:, 根据其中的规律可得_(用含n的式子表示)5、若关于x的分式方程+ = 2m无解,则m的值为_三、解答题(5小题,每小题10分,共计50分)1、计算:2、今年春节期间第二十四届冬奥会在我国成功举办,吉祥物“冰墩墩”以其呆萌可爱、英姿飒爽形象
4、,深受大家喜爱某商店第一次用3000元购进一批“冰墩墩”玩具,很快售完;该商店第二次购进该“冰墩墩”玩具时,进价提高了20%,同样用3000元购进的数量比第一次少了10件(1)求第一次购进的“冰墩墩”玩具每件的进价;(2)若两次购进的“冰墩墩”玩具每件售价均为70元,且全部售完,求两次的总利润3、计算:佳佳的计算过程如下:解:请问佳佳的计算结果对吗?如果不对,请改正4、解答下列各题:(1)解方程:(2)解不等式组:,并把解集表示在数轴上5、下面是小彬同学进行分式化简的过程,请认真阅读并完成相应任务第一步第二步第三步 第四步第五步第六步任务一:填空:以上化简步骤中,第_步是进行分式的通分,通分的
5、依据是_或填为_;第_步开始出现错误,这一步错误的原因是_;任务二:请直接写出该分式化简后的正确结果;任务三:除纠正上述错误外,请你根据平时的学习经验,就分式化简时还需要注意的事项给其他同学提一条建议-参考答案-一、单选题1、C【解析】【分析】分式方程去分母转化为整式方程,表示出整式方程的解,由分式方程的解为正整数求出的范围,再由不等式组的解集确定出的范围,进而求出的具体范围,确定出整数的值,求出之和即可【详解】解:分式方程去分母得:,解得:,由分式方程的解为正整数,得到,即,不等式,整理得:,由不等式的解集为,得到,即,的范围是,且是整数,的值为,0, 2,3,4,把代入,得:,即,不符合题
6、意;把代入,得:,即,符合题意;把代入,得:,即,不符合题意;把代入,得:,即,不符合题意;把代入,得:,即,符合题意;把代入,得:,即,不符合题意;符合条件的整数取值为,3,之和为2,故选:C【考点】本题考查了解一元一次不等式组,以及解分式方程,熟练掌握运算法则是解本题的关键2、A【解析】【分析】设原计划每天挖x米,则实际每天挖(x+20)米,由题意可得等量关系:原计划所用时间-实际所用时间=4,根据等量关系列出方程即可【详解】解:设原计划每天挖x米,原计划所用时间为,实际所用时间为,依题意得:,故选:A【考点】本题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系
7、,再列出方程3、D【解析】【分析】利用分式通分即可求出答案【详解】最简公分母为:12xy2故选D【考点】本题考查了分式的通分,属于基础题型4、B【解析】【详解】解:分式方程去分母得:2x-a=x+1,解得:x=a+1根据题意得:a+10且a+1+10,解得:a-1且a-2即字母a的取值范围为a-1故选B点睛:本题考查了分式方程的解,本题需注意在任何时候都要考虑分母不为05、B【解析】【分析】先求出对于当时,可得,所以正确;对于当时,不能确定的正负,所以错误;对于当时,不能确定的正负,所以错误;对于当时,正确【详解】,当时,所以,正确;当时,如果,则此时,错误;当时,如果,则此时,错误;当时,正
8、确故选B【考点】本题关键在于熟练掌握分式的运算,并会判断代数式的正负6、B【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把已知等式代入计算即可求出值【详解】a+b=5,原式 故选:B【考点】考查分式的化简求值,掌握减法法则以及除法法师是解题的关键,注意整体代入法在解题中的应用7、D【解析】【详解】解:将x=3代入,得:,解得:k=2,故选D8、B【解析】【分析】解不等式组和分式方程得出关于的范围,根据不等式组有且仅有非负整数解和分式方程的解为正整数解得出的范围,继而可得整数的个数【详解】解:解不等式,得:,解不等式,得:,不等式组有且仅有三个非负整数解,解
9、得:,解关于的分式方程,得:,分式方程有正整数解,且,即,解得:且,综上,所以所有满足条件的整数的值为14,15,一共2个故选:B【考点】本题主要考查分式方程的解和一元一次不等式组的解,解题的关键是熟练掌握解分式方程和不等式组的能力,并根据题意得到关于的范围9、A【解析】【分析】先把分子分母进行分解因式,然后化简,最后把代入到分式中进行正确的计算即可得到答案.【详解】解:把代入上式中原式故选A.【考点】本题主要考查了分式的化简求值,解题的关键在于能够熟练掌握相关知识点进行求解运算.10、B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同
10、的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.000000823=8.2310-7故选B【考点】本题考查用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定二、填空题1、【解析】【分析】由已知得到,整体代入求解即可【详解】解:由已知,得:,即,故答案为:【考点】本题考查了分式的化简求值,解题的关键是将已知正确变形2、【解析】【分析】分式的混合运算,根据分式的加减乘除混合运算法则可以解答本题,括号里先通分运算,再进行括号外的除法运算,即可解答本题.【详解】解:=a故答案是:-a【
11、考点】本题考查的是分式的混合运算,能正确运用运算法则是解题的关键.3、【解析】【分析】先通分,再根据分式有意义的条件即分母不为0,分式为0即分式的分子为0解题即可【详解】解:故答案为:【考点】本题考查解分式方程,涉及分式有意义的条件、分式的值为0等知识,是重要考点,难度较易,掌握相关知识是解题关键4、【解析】【分析】观察发现,每一项都是一个分数,分母依次为3、5、7,那么第n项的分母是2n+1;分子依次为2,3,10,15,26,变化规律为:奇数项的分子是n2+1,偶数项的分子是n2-1,即第n项的分子是n2+(-1)n+1;依此即可求解【详解】解:由分析得,故答案为:【考点】本题考查学生通过
12、观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案5、或1【解析】【分析】方程无解分两种情况:方程的根是增根去分母后的整式方程无解,去分母后分情况讨论即可.【详解】去分母得:x-4m=2m(x-4)若方程的根是增根,则增根为x=4把x=4代入得:4-4m=0解得:m=1去分母得:x-4m=2m(x-4)整理得:(2m-1)x=4m方程无解,故2m-1=0解得:m= m的值为或1故答案为:或1【考点】本题考查的是分式方程的无解问题,注意无解的两种情况是解答的关键.三、解答题1、1【解析】【分析】根据负整数指数幂,绝对值的运算,0次幂分别计算出每一项,再计算即可
13、【详解】解:【考点】本题考查负整数指数幂,绝对值的运算,0次幂,熟练掌握运算法则是解题的关键2、 (1)第一次购进的“冰墩墩”玩具每件的进价为50元(2)两次的总利润为1700元【解析】【分析】(1)设第一次购进的“冰墩墩”玩具每件的进价为x元,则第二次每件的进价,根据题意列方程求解即可;(2)根据总利润=销售额-成本计算即可(1)解:设第一次购进的“冰墩墩”玩具每件的进价为x元,则第二次每件的进价为元,依题意得:,解得:,经检验:是方程的解,且符合题意,答:第一次购进的“冰墩墩”玩具每件的进价为50元(2)解:由题意可得(元),答:两次的总利润为1700元【考点】本题主要考查了分式方程的应用
14、,理解题意列出正确方程是解题关键3、佳佳的计算结果不对,改正如下:原式【解析】【分析】按照先算除法再算乘法的顺序计算即可;【详解】佳佳的计算结果不对,改正如下:原式【考点】本题主要考查了分式的化简,准确计算是解题的关键4、(1)方程无解;(2),数轴见解析【解析】【分析】(1)解分式方程,先去分母,然后去括号,移项,合并同类项,系数化1,注意结果要进行检验;(2)解一元一次不等式组,分别求出各不等式的解集,再在数轴上表示出来即可【详解】解:(1)去分母得:,去括号得:,移项合并同类项得:,系数化为1得:,经检验时,则为原方程的增根,原分式方程无解 (2),由得,由得,不等式组的解集为:,在数轴
15、上表示如图:【考点】本题考查解分式方程和解一元一次不等式组,掌握运算顺序和计算法则正确计算是解题关键5、任务一:三;分式的基本性质;分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变;五;括号前是“”号,去掉括号后,括号里的第二项没有变号;任务二:;任务三:最后结果应化为最简分式或整式,答案不唯一,详见解析【解析】【分析】任务一:分式的通分是把异分母的分式化为同分母的分式,通分的依据是分式的基本性质,据此即可进行判断;根据分式的运算法则可知:第五步开始出现错误,然后根据去括号法则解答即可;任务二:根据分式的混合运算法则解答;任务三:可从分式化简的最后结果或通分时应注意的事项等进行说
16、明【详解】解:任务一:以上化简步骤中,第三步是进行分式的通分,通分的依据是分式的基本性质或填为分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变;故答案为:三;分式的基本性质;分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变;第五步开始出现错误,这一步错误的原因是括号前是“”号,去掉括号后,括号里的第二项没有变号;故答案为:五;括号前是“”号,去掉括号后,括号里的第二项没有变号;任务二:原式 任务三:答案不唯一,如:最后结果应化为最简分式或整式;约分,通分时,应根据分式的基本性质进行变形;分式化简不能与解分式方程混淆,等【考点】本题考查了分式的加减运算,属于基础题型,熟练掌握运算法则、明确每一步计算的根据是解题的关键