ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:17KB ,
资源ID:284767      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-284767-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(新课程标准下的数学概念的教学.doc)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

新课程标准下的数学概念的教学.doc

1、新课程标准下的数学概念的教学数学概念是现实世界中空间形式和数量关系及其本质属性在思维中得反映。恩格斯说:“在一定意义上,科学的内容就是概念的体系。”现代的一些学者认为:“数学的学习过程,就是不断地建立各种数学概念的过程。”人们对客观事物的认识一般是通过感觉、知觉形成观念(表象),这是感性认识阶段。再经过分析、比较、抽象、概括等一系列思维活动,从而认识事物的本质属性,形成概念,这是理性认识阶段。理性认识在实践的基础上不断深化,概念相应地就进一步获得发展。概念可视为思维的细胞,理解与掌握概念是学好数学基础知识,提高数学能力的关键。加强概念的教学,历来是中学数学的一项重要任务。然而,在目前的中学数学

2、教学中,对概念的教学有许多不尽人意的地方。有的不重视甚至不会进行数学概念的教学:有的主次不分,要求不当,以致学生在学习中表现出概念不清,运算不准,推理不严,画图不明,以及不会直接应用概念进行解题等现象。为此,本文结合自己的教学实践,谈谈如何进行数学概念的教学。一、引入数学概念,要生动直观中学数学概念无论如何抽象,实际都有它的具体内容和现实原型。在教学中,既应从学生的生活经验出发,也应该注意从解决数学内部的运算问题出发来引入概念。这样通过学生熟知的语言和事例向他们提供感性材料,引导他们抽象出相应的数学概念,才能使学生较好地掌握数学概念的本质。引入数学概念的方法很多,如以旧导新引入,实践操作引入,

3、通过计算引入,多媒体演示引入,创设问题情境引入等。无论采用什么样的引入形式,都要根据学生年龄特征和已有生活经验去设计出适宜的引入形式,尽量做到生动直观。例如在讲三角形分类时,教师可以利用几何画板画出各种类型的三角形,并且使它们运动起来,然后引导学生观察各个三角形的各个内角有什么变化?各是什么角?这样的角有几个?最后由学生归纳出直角三角形、锐角三角形和钝角三角形的定义。二、揭示概念内涵,要抓住本质为准确、深刻地理解概念,我们在提供感性认识的基础上,必须作出辨证分析,用不同方法揭示不同概念的本质。所谓概念的内涵,就是概念所反映事物的一切本质属性的总和,概念所反映事物的范围,叫做这个概念的外延。把握

4、了概念的内涵和外延,也就掌握了概念的本质。在揭示概念的内涵时,对于不同类型的概念,应有不同的侧重点,对于涉及的知识面较广的概念,要抓住关键和要点,进行剖析。例如,对“种+类差”定义的概念,应揭示其种概念与类差,使学生认识被定义的概念,既有它的种概念的一般属性,又有自己独有的特性,同时要讲清概念中的每一字、词的真正含义。例如平行四边形的定义,四边形就是它最邻近的种概念;类差是“两组对边分别平行”这个本质属性。由于类差不唯一,因此这种方法所作出的定义也不唯一。三、对于相关概念,要讲清联系数学概念是随着数学知识的发展而不断发展着的,学习数学概念也要在数学知识体系中不断加深认识。才数学概念之间的关系来

5、学习概念,可深化对所学概念的认识。学生概念之间有着密切的联系,在教学中,不仅要使学生掌握单个概念,更重要的还应当使学生掌握概念的体系,形成知识结构。例如,因式公因式因式分解化简分式分式运算解分式方程,四边形平行四边形矩形正方形等概念之间都由其内在的联系。明确概念的系统性,有利于加深对有关概念的理解,也便于学生记忆。当学生对单个概念有了初步认识之后,还应进一步分析综合,掌握每个概念的来龙去脉,搞清概念之间转化的条件,理解每一个概念在知识链条上的地位和作用,并且引导学生用运动的观点认识研究数学,这样不但有助于掌握和理解概念,同时还能培养学生初步的辩证唯物主义观点。四、对于易混概念,要注意对比有些概

6、念是成对出现的,两个概念同属于一个种概念且呈矛盾状态(例如正数与负数,乘方与开方);有些概念是由概念的逆反关系派生出来的(例如指数函数与对数函数);有些概念是由某一概念逐步推广引申而得到的(如任意角的三角函数由锐角三角函数推广而来的)等等。注意对相近、对立、衍生概念之间的比较,特别是通过反例来纠正学生在理解概念中的错误,有利于学生准确理解概念。对于一些貌同实异,容易混淆的概念,教学中应注重其本质属性,分析从属关系,通过对照比较,找出异同,加以严格区别。例如排列与组合两个概念属类同概念,学生学习起来,容易混淆,教师讲解时要抓住其本质认真剖析。这两个概念的共同点是:“从n个不同元素中,任取m个元素

7、”;而不同点就是前者要“按一定的顺序排成一列”,而后者却是“不管怎样的顺序并成一组”。而不同点所揭示出来的不同内容,恰恰是这两个不同概念内涵的本质区别;再如函数的最大(或最小)值与极大(或极小)值是两个既有区别又有联系的概念:前者是函数在其定义区间(包括端点)上对所有函数值进行比较得出来的,是函数在定义区间上的整体概念,后者是对极值点附近的函数值比较得出来的,是函数在极值点附近的局部性概念。函数在一个区间内的极大值或极小值可能有两个以上,而最大值与最小值只能各有一个,并且极大值(极小值)不一定就是最大值(最小值),单除端点外,在区间内部的最大值(最小值),则一定是极大值(极小值)。五、对于语,

8、要重点强调数学概念是借助语言文学或数学符号来表达的,语句中必定有语,讲解中应该突出语,重点剖析,认真强调。既要讲清它的表面含义,又要挖掘它的内涵与引申意义。例如三角形的内切圆定义:“和三角形各边都相切的圆”这里语就是这个“都”字,如果和三角形的一边相切不行,和三角形的两边相切也不行,必须强调和三角形的各边都相切。在讲解中要加以阐述和强调。六、关于平行概念,要加强类比把两类平行的概念,有机地联系在一起进行比较,找出它们的相同点和不同点,揭示它们的规律和联系,可以收到由此及彼,温故知新,迁移类比,触类旁通,加深理解的效果,增强记忆的清晰程度。例如平面几何中的全等三角形与相似三角形这两个概念,通过类

9、比,不但复习了有关全等三角形的概念、性质和判定,而且使学生对相似三角形的概念、性质和判定理解的更加深刻、透彻。例如平面几何中角与立体几何中的二面角进行类比,从一点出发引出的两条射线所组成的图形和从一条直线出发的两个半平面所组成的图形。七、理解数学概念,要重视应用教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。其中“师傅”更早则意指春秋时国

10、君的老师。说文解字中有注曰:“师教人以道者之称也”。“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。“老师”的原意并非由“老”而形容“师”。“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。“老”“师”连用最初见于史记,有“荀卿最为老师”之说法。慢慢“老师”之说也不再有年龄的限制,老少皆可适用。只是司马迁笔下的“老师”当然不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识。中学数学的运算、推理、证明等都是以

11、有关概念为依据的,在教学中,应加强概念在运算、推理、论证中的应用。有时围绕着一个概念要配备多种练习题,组织学生进行题组训练,让学生从多角度,多层次上去进行应用。先实行巩固性应用,然后进行综合性应用,在应用中达到切实掌握数学概念的目的。同时,在教学方法上,还应注意以下几点:要抓住主要概念讲解。例如,在学习成比例、比例外项、第四比例项、比例中项等概念时,应抓住成比例的概念。要选择讲解重点。例如,在学习“三线八角”时,应选择同位角的概念为讲解重点;在学习三角函数与反三角函数时,应选择正弦函数与反正弦函数的概念为讲解重点。针对概念不同的定义方式,采用不同的教学方法。例如,对于描述性定义法,应尽可能多举

12、实例,让学生通过实例进行抽象概括,上升为概念,同时再从实践中寻找应用。最后,需要指出的是,我们既要十分重视数学概念的教学,又不可以走上极端,从所谓严谨性出发,追求形式上的完美,什么都定义,什么都要学生理解掌握,根据当前中学实际,有些感念,例如等式、方程、同解等概念,要加以淡化,重视数学概念的应用。学好数学,主要是抓住数学思想,形成数学观念,掌握数学技能,不能被无关重要的概念,貌似高深的问题所左右,以免浪费精力。语文课本中的文章都是精选的比较优秀的文章,还有不少名家名篇。如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。现在,不少语文教师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。结果教师费劲,学生头疼。分析完之后,学生收效甚微,没过几天便忘的一干二净。造成这种事倍功半的尴尬局面的关键就是对文章读的不熟。常言道“书读百遍,其义自见”,如果有目的、有计划地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强语感,增强语言的感受力。久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作中自觉不自觉地加以运用、创造和发展。

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1