收藏 分享(赏)

江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc

上传人:a**** 文档编号:280143 上传时间:2025-11-22 格式:DOC 页数:67 大小:2.56MB
下载 相关 举报
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第1页
第1页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第2页
第2页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第3页
第3页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第4页
第4页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第5页
第5页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第6页
第6页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第7页
第7页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第8页
第8页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第9页
第9页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第10页
第10页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第11页
第11页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第12页
第12页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第13页
第13页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第14页
第14页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第15页
第15页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第16页
第16页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第17页
第17页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第18页
第18页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第19页
第19页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第20页
第20页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第21页
第21页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第22页
第22页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第23页
第23页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第24页
第24页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第25页
第25页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第26页
第26页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第27页
第27页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第28页
第28页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第29页
第29页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第30页
第30页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第31页
第31页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第32页
第32页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第33页
第33页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第34页
第34页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第35页
第35页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第36页
第36页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第37页
第37页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第38页
第38页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第39页
第39页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第40页
第40页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第41页
第41页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第42页
第42页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第43页
第43页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第44页
第44页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第45页
第45页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第46页
第46页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第47页
第47页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第48页
第48页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第49页
第49页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第50页
第50页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第51页
第51页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第52页
第52页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第53页
第53页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第54页
第54页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第55页
第55页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第56页
第56页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第57页
第57页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第58页
第58页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第59页
第59页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第60页
第60页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第61页
第61页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第62页
第62页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第63页
第63页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第64页
第64页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第65页
第65页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第66页
第66页 / 共67页
江苏省13市2015年中考数学试题分类解析汇编 专题20 压轴题.doc_第67页
第67页 / 共67页
亲,该文档总共67页,全部预览完了,如果喜欢就下载吧!
资源描述

1、专题20:压轴题1. (2015年江苏连云港3分)如图是本地区一种产品30天的销售图象,图是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量一件产品的销售利润,下列结论错误的是【 】A. 第24天的销售量为200件 B. 第10天销售一件产品的利润是15元 C. 第12天与第30天这两天的日销售利润相等 D. 第30天的日销售利润是750元【答案】C【考点】一次函数的应用;待定系数法的应用;直线上点的坐标与方程的关系;分类思想的应用【分析】根据函数图象分别各选项进行分析判断:A、根据图可得第2

2、4天的销售量为200件,故正确.B设当0t20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为,把(0,25),(20,5)代入得:,.当x=10时,. 故正确.C当0t24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为,把(0,100),(24,200)代入得:,当t=12时,y=150,第12天的日销售利润为;15013=1950(元),第30天的日销售利润为;1505=750(元).而7501950,故C错误.D第30天的日销售利润为;1505=750(元),故正确故选C2. (2015年江苏南京2分)如图,在矩形ABCD中,AB=4,AD=5,AD、

3、AB、BC分别与O相切于E、F、G三点,过点D作O的切线交BC于点M,则DM的长为【 】A. B. C. D. 【答案】A.【考点】矩形的性质;切线的性质;正方形的判定和性质;切线长定理;勾股定理;方程思想的应用.【分析】如答图,连接,则根据矩形和切线的性质知,四边形都是正方形.AB=4,.AD=5,.设GM=NM=x,则.在中,由勾股定理得:,即,解得,.故选A.3. (2015年江苏苏州3分)如图,在一笔直的海岸线l上有A、B两个观测站,AB=2km,从A测得船C在北偏东45的方向,从B测得船C在北偏东22.5的方向,则船C离海岸线l的距离(即CD的长)为【 】Akm Bkm Ckm Dk

4、m【答案】B【考点】解直角三角形的应用(方向角问题);矩形的判定和性质;等腰直角三角形的判定和性质.【分析】如答图,过点B作BEAC交AC于点E,过点E作EFCD交CD于点F,则根据题意,四边形BDEF是矩形,ABE、EFC和ADC都是等腰直角三角形,AB=2,DF=BF= AB=2,.EBC=BCE=22.5,CE=BE=2.(km).船C离海岸线l的距离为 km.故选B4. (2015年江苏泰州3分)如图,中,AB=AC,D是BC的中点,AC的垂直平分线分别交 AC、AD、AB于点E、O、F,则图中全等的三角形的对数是【 】A. 1对 B. 2对 C. 3对 D. 4对【答案】D.【考点】

5、等腰三角形的性质;线段垂直平分线的性质;全等三角形的判定. 【分析】AB=AC,D是BC的中点,根据等腰三角形三线合一的性质,易得.EF是AC的垂直平分线,根据线段垂直平分线上的点到线段两端的距离相等的性质,易得.综上所述,图中全等的三角形的对数是4对.故选D.5. (2015年江苏无锡3分)如图,RtABC中,ACB90,AC3,BC4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B处,两条折痕与斜边AB分别交于点E、F,则线段BF的长为【 】A. B. C. D. 【答案】B【考点】翻折变换(折叠问题);折叠的性质;等腰直角三角形的判定和

6、性质;勾股定理【分析】根据折叠的性质可知,.,. 是等腰直角三角形. . .,.在中,根据勾股定理,得AB=5,.在中,根据勾股定理,得,.在中,根据勾股定理,得.故选B6. (2015年江苏徐州3分)若函数的图像如图所示,则关于的不等式的解集为【 】A. B. C. D. 【答案】C.【考点】直线的平移;不等式的图象解法;数形结合思想的应用.【分析】如答图,将函数的图像向右平移3 个单位得到函数的图象,由图象可知,当时,函数的图象在轴上方,即.关于的不等式的解集为.故选C.7. (2015年江苏盐城3分)如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,

7、沿ADEFGB的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则ABP的面积S随着时间t变化的函数图像大致为【 】A. B. C. D. 【答案】B.【考点】单动点问题;函数图象的分析;正方形的性质;三角形的面积;分类思想和数形结合思想的应用.【分析】根据题意,可知ABP的面积S随着时间t变化的函数图像分为五段:当点P从AD时,ABP的面积S是t的一次函数;当点P从DE时,ABP的面积S不随t的变化而变化,图象是平行于t轴的一线段;当点P从EF时,ABP的面积S是t的一次函数;当点P从FG时,ABP的面积S不随t的变化而变化,图象是平行于t轴的一线段;当点P从GB时,ABP的面积S是

8、t的一次函数.故选B.8. (2015年江苏扬州3分)已知x=2是不等式的解,且x=1不是这个不等式的解,则实数的取值范围是【 】A. B. C. D. 【答案】C.【考点】不等式的解;解一元一次不等式组. 【分析】x=2是不等式的解,且x=1不是这个不等式的解,.故选C.9. (2015年江苏常州2分)将一张宽为4cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是【 】A. cm2 B.8 cm2 C. cm2 D. 16cm2【答案】B【考点】翻折变换(折叠问题);等腰直角三角形的性质.【分析】如答图,当ACAB时,三角形面积最小,BAC=90,

9、ACB=45,AB=AC=4cm.SABC=44=8cm2故选B10. (2015年江苏淮安3分)如图,l1l2l3,直线a、b与l1、l2、l3分别相交于点A、B、C和点D、E、F,若,DE=4,则EF的长是【 】A. B. C. D. 【答案】C.【考点】平行线分线段成比例的性质. 【分析】l1l2l3,.,DE=4,.故选C.11. (2015年江苏南通3分)如图,AB为O的直径,C为O上一点,弦AD平分BAC,交BC于点E,AB=6,AD=5,则AE的长为【 】A. 2.5 B. 2.8 C. 3 D. 3.2【答案】B.【考点】圆周角定理;勾股定理;相似三角形的判定和性质.【分析】如

10、答图,连接BD、CD,AB为O的直径,ADB=90.弦AD平分BAC,CD=BD=.CBD=DAB.在ABD和BED中,BAD=EBD,ADB=BDE,ABDBED. ,即.故选B.12. (2015年江苏宿迁3分)在平面直角坐标系中,点A,B的坐标分别为(3,0),(3,0),点P在反比例函数的图象上,若PAB为直角三角形,则满足条件的点P的个数为【 】A. 2个 B. 4个 C. 5个 D. 6个【答案】D【考点】反比例函数图象上点的坐标特征;圆周角定理;分类思想和数形结合思想的应用【分析】如答图,若PAB为直角三角形,分三种情况:当PAB=90时,P点的横坐标为3,此时P点有1个;当PB

11、A=90时,P点的横坐标为3,此时P点有1个;当APB=90,以点O 为圆心AB长为直径的圆与的图象交于4点,此时P点有4个综上所述,满足条件的P点有6个故选D13. (2015年江苏镇江3分)如图,坐标原点O为矩形ABCD的对称中心,顶点A的坐标为(1,t),ABx轴,矩形与矩形ABCD是位似图形,点O为位似中心,点A,B分别是点A,B的对应点,已知关于x,y的二元一次方程(m,n是实数)无解,在以m,n为坐标(记为(m,n)的所有的点中,若有且只有一个点落在矩形的边上,则的值等于【 】A. B. C. D. 【答案】D【考点】位似变换;二元一次方程组的解;坐标与图形性质;反比例函数的性质;

12、曲线上点的坐标与方程的关系【分析】坐标原点O为矩形ABCD的对称中心,顶点A的坐标为(1,t),点C的坐标为.矩形与矩形ABCD是位似图形,点A的坐标为,点C的坐标为.关于x,y的二元一次方程(m,n是实数)无解,由得mn=3,且,即(m2).以m,n为坐标(记为(m,n)的所有的点中,有且只有一个点落在矩形的边上,反比例函数的图象只经过点A或C.而根据反比例函数的对称性,反比例函数的图象同时经过点A或C,只有在,时反比例函数的图象只经过点C.故选D1. (2015年江苏连云港3分)如图,在ABC中,BAC=60,ABC=90,直线l1l2l3,l1与l2之间距离是1,l2与l3之间距离是2,

13、且l1,l2,l3分别经过点A,B,C,则边AC的长为 【答案】.【考点】平行线的性质;锐角三角函数定义;特殊角的三角函数值;相似三角形的判定和性质;勾股定理【分析】如答图,过点B作EFl2,交l1于E,交l3于F, BAC=60,ABC=90,直线l1l2l3,EFl1,EFl3. AEB=BFC=90ABC=90,EAB=90ABE=FBC.BFCAEB,EB=1,FC=在RtBFC中,在RtABC中, 2. (2015年江苏南京2分)如图,过原点O的直线与反比例函数y1,y2的图象在第一象限内分别交于点A、B,且A为OB的中点,若函数,则y2与x的函数表达式是 【答案】.【考点】反比例函

14、数的图象和性质;曲线上点的坐标与方程的关系;待定系数法的应用.【分析】设y2与x的函数表达式是,点B在反比例函数y2的图象上,可设. A为OB的中点,.点A在反比例函数的图象上,解得.y2与x的函数表达式是.3. (2015年江苏苏州3分)如图,四边形ABCD为矩形,过点D作对角线BD的垂线,交BC的延长线于点E,取BE的中点F,连接DF,DF=4设AB=x,AD=y,则的值为 【答案】16.【考点】代数式的几何意义;矩形的性质;直角三角形斜边上中线的性质;勾股定理. 【分析】四边形ABCD为矩形,AB=x,AD=y,DC=x,BC=y.在中,点F是斜边BE的中点,DF=4,BF= DF=4.

15、在中,即.4. (2015年江苏泰州3分)如图, 矩形中,AB=8,BC=6,P为AD上一点, 将ABP 沿BP翻折至EBP, PE与CD相交于点O,且OE=OD,则AP的长为 【答案】.【考点】翻折变换(折叠问题);矩形的性质;折叠对称的性质;勾股定理,全等三角形的判定和性质;方程思想的应用. 【分析】如答图,四边形是矩形,.根据折叠对称的性质,得,.在和中,. .设,则,.在中,根据勾股定理,得,即.解得.AP的长为.5. (2015年江苏无锡2分)某商场在“五一”期间举行促销活动,根据顾客按商品标价一次性购物总额,规定相应的优惠方法:如果不超过500元,则不予优惠;如果超过500元,但不

16、超过800元,则按购物总额给予8折优惠;如果超过800元,则其中800元给予8折优惠,超过800元的部分给予6折优惠促销期间,小红和她母亲分别看中一件商品,若各自单独付款,则应分别付款480元和520元;若合并付款,则她们总共只需付款 元 【答案】838或910【考点】函数模型的选择与应用;函数思想和分类思想的应用【分析】由题意知:小红付款单独付款480元,实际标价为480或4800.8=600元,小红母亲单独付款520元,实际标价为5200.8=650元,如果一次购买标价480+650=1130元的商品应付款8000.8+(1130800)0.6=838元;如果一次购买标价600+650=1

17、250元的商品应付款8000.8+(1250800)0.6=910元答案为:838或9106. (2015年江苏徐州3分)用一个圆心角为90,半径为4的扇形围成一个圆锥的侧面,该圆锥底面圆的半径 【答案】1.【考点】圆锥和扇形的计算。【分析】扇形圆锥的圆心角为90,半径为4,扇形的弧长为.圆锥的底面周长等于它的侧面展开图的弧长,根据圆的周长公式,得,解得.7. (2015年江苏盐城3分)设ABC的面积为1,如图将边BC、AC分别2等份,、相交于点O,AOB的面积记为;如图将边BC、AC分别3等份,、相交于点O,AOB的面积记为;, 依此类推,则可表示为 (用含的代数式表示,其中为正整数)【答案

18、】.【考点】探索规律题(图形的变化类);平行的判定和性质;相似三角形的判定和性质;等底或等高三角形面积的性质.【分析】如答图,连接,可知.在图中,由题意,得,且,.和的边上高的比是.又,.在图中,由题意,得,且,.和的边上高的比是.又,.在图中,由题意,得,且,.和的边上高的比是.又,.依此类推, 可表示为,.8. (2015年江苏扬州3分)如图,已知ABC的三边长为,且,若平行于三角形一边的直线将ABC的周长分成相等的两部分,设图中的小三角形、的面积分别为,则的大小关系是 (用“65时,W随x的增大而减小,时,因此,当该产品产量为75kg时获得的利润最大,最大利润是2250元【考点】一次函数

19、和二次函数的实际应用;待定系数法的应用;曲线上点的坐标与方程的关系;由实际问题列函数关系式(销售问题);二次函数的性质;分类思想的应用【分析】(1)点D的横坐标、纵坐标的实际意义:当产量为为130kg时,该产品每千克生产成本与销售价相等,都为42元(2)根据A、B两点的坐标应用待定系数法即可求解(3)应用待定系数法求出y2与x之间的函数表达式,根据“总利润单位利润产量”分两种情况列出总利润关于x的二次函数,应用二次函数的性质求解即可5. (2015年江苏苏州10分)如图,已知二次函数(其中0m1)的图像与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴为直线l设P为对称轴l上的点

20、,连接PA、PC,PA=PC(1)ABC的度数为 ;(2)求P点坐标(用含m的代数式表示);(3)在坐标轴上是否存在点Q(与原点O不重合),使得以Q、B、C为顶点的三角形与PAC相似,且线段PQ的长度最小?如果存在,求出所有满足条件的点Q的坐标;如果不存在,请说明理由【答案】解:(1)45.(2)如答图1,过点作轴于点,设l与轴交于点,根据题意,得抛物线的对称轴为,设点的坐标为,PA=PC,.,即.解得.P点坐标为.(3)存在点Q满足题意.P点坐标为,.,.是等腰直角三角形.以Q、B、C为顶点的三角形与PAC相似,是等腰直角三角形.由题意知,满足条件的点Q的坐标为或.当点Q的坐标为时,如答图2

21、,若PQ与垂直,则,解得,即.若PQ与不垂直,则有,0m1,当时,取得最小值,取得最小值.,.当时,点Q的坐标为,取得最小值.当点Q的坐标为时,如答图3,若PQ与垂直,则,解得,即.若PQ与不垂直,则有,0m1,当时,取得最小值,取得最小值.,.当时,点Q的坐标为,取得最小值.综上所述,点Q的坐标为或时,的长度最小.【考点】二次函数综合题;相似三角形的存在性问题;二次函数的性质;曲线上点的坐标与方程的关系;等腰直角三角形的判定和性质;勾股定理;相似三角形的性质;实数的大小比较;分类思想的应用.【分析】(1)令,则,点C的坐标为,令,即,解得,0m1,点A在点B的左侧,点B的坐标为. .BOC=

22、90,是等腰直角三角形.OBC=45.(2)过点作轴于点,设l与轴交于点,求出抛物线的对称轴为,则可设点的坐标为,由PA=PC即,根据勾股定理得到,解出即可求解.(3)根据相似和是等腰直角三角形证明是等腰直角三角形,由题意知,满足条件的点Q的坐标为或,从而分点Q的坐标为或两种情况讨论即可.6. (2015年江苏苏州10分)如图,在矩形ABCD中,AD=acm,AB=bcm(ab4),半径为2cm的O在矩形内且与AB、AD均相切现有动点P从A点出发,在矩形边上沿着ABCD的方向匀速移动,当点P到达D点时停止移动;O在矩形内部沿AD向右匀速平移,移动到与CD相切时立即沿原路按原速返回,当O回到出发

23、时的位置(即再次与AB相切)时停止移动已知点P与O同时开始移动,同时停止移动(即同时到达各自的终止位置)(1)如图,点P从ABCD,全程共移动了 cm(用含a、b的代数式表示);(2)如图,已知点P从A点出发,移动2s到达B点,继续移动3s,到达BC的中点若点P与O的移动速度相等,求在这5s时间内圆心O移动的距离;(3)如图,已知a=20,b=10是否存在如下情形:当O到达O1的位置时(此时圆心O1在矩形对角线BD上),DP与O1恰好相切?请说明理由【答案】解:(1).(2)在整个运动过程中,点P移动的距离为cm,圆心移动的距离为cm,由题意得.点P移动2s到达B点,即点P用2s移动了cm,点

24、P继续移动3s到达BC的中点,即点P用3s移动了cm,.联立,解得.点P移动的速度与O移动的速度相等,O移动的速度为(cm/s).这5s时间内圆心O移动的距离为(cm).(3)存在这样的情形.设点P移动的速度为cm/s,O移动的速度为cm/s,根据题意,得.如答图,设直线OO1与AB交于点E,与CD交于点E,O1与AD相切于点PG.若PD与O1相切,切点为H,则.易得DO1GDO1H,ADB=BDP.BCAD,ADB=CBD. BDP =CBD.BP=DP.设cm,则cm,cm,在中,由勾股定理,得,即,解得.此时点P移动的距离为(cm).EFAD,BEO1BAD. ,即.cm,cm.当O首次

25、到达O1的位置时,O与移动的距离为14cm.此时点P移动的速度与O移动的速度比为.此时DP与O1恰好相切.当O在返回途中到达O1的位置时,O与移动的距离为cm.此时点P移动的速度与O移动的速度比为.此时DP与O1不可能相切.【考点】单动点和动圆问题;矩形的性质;直线与圆的位置关系;全等三角形的判定和性质;勾股定理;相似三角形的判定和性质;方程思想和分类思想的应用.【分析】(1)根据矩形的性质可得:点P从ABCD,全程共移动了cm.(2)根据“在整个运动过程中,点P移动的距离等于圆心移动的距离”和“点P用2s移动了cm,点P用3s移动了cm”列方程组求出a,b,根据点P移动的速度与O移动的速度相

26、等求得O移动的速度,从而求得这5s时间内圆心O移动的距离.(3)分O首次到达O1的位置和O在返回途中到达O1的位置两种情况讨论即可.7. (2015年江苏泰州12分)如图,正方形ABCD的边长为8cm,E、F、G、H分别是AB、BC、CD、DA 上的动点,且AE=BF=CG=DH.(1)求证:四边形EFGH是正方形;(2)判断直线EG是否经过一个定点,并说明理由;(3)求四边形EFGH面积的最小值.【答案】解:(1)证明:四边形ABCD是正方形,.,.四边形EFGH是菱形.,.四边形EFGH是正方形.(2)直线EG经过定点-正方形ABCD的中心. 理由如下:如答图,连接,、相交于点,四边形AB

27、CD是正方形,ABDC.,四边形BGDE是平行四边形.,即点是正方形ABCD的中心.直线EG经过定点-正方形ABCD的中心.(3)设,则,当时,四边形EFGH面积的最小值为32.【考点】单动点和定值问题;正方形的判定和性质;全等三角形的判定和性质;平行四边形的判定和性质;勾股定理;二次函数的应用(实际问题).【分析】(1)由证明,即可证明四边形EFGH是一个角是直角的菱形-正方形.(2)作辅助线“连接,、相交于点”构成平行四边形BGDE,根据平行四边形对角线互分的性质即可证明直线EG经过定点-正方形ABCD的中心.(3)设,根据正方形的性质和勾股定理得到关于的二次函数,应用二次函数最值原理求解

28、即可.8. (2015年江苏泰州14分)已知一次函数的图像与 轴、轴分别相交于点A、B,点P在该函数图像上, P到轴、轴的距离分别为、.(1)当P为线段AB的中点时,求的值;(2)直接写出的范围,并求当时点P的坐标;(3)若在线段AB 上存在无数个P点,使(为常数), 求的值.【答案】解:(1)一次函数的图像与 轴、轴分别相交于点A、B,.P为线段AB的中点,.(2).设,.当时,由解得,与不合,舍去.当时,由解得,此时.当时,由解得,此时.综上所述,当时点P的坐标为或.(3)设,.点P在线段AB 上,.,.存在无数个P点,. 【考点】阅读理解型问题;一次函数综合题;直线上点的坐标与方程的关系

29、;绝对值的意义;分类思想的应用.【分析】(1)根据直线上点的坐标与方程的关系,由一次函数解析式, 可求出点点A、B的坐标,从而求出中点P的坐标,根据定义求出.(2)设,.,当时,;当时,由;当时,.综上所述, 的范围为.同样分类讨论时点P的坐标.(3)设,则,由点P在线段AB 上得的范围,得到,根据求解即可.9. (2015年江苏无锡10分)一次函数的图像如图所示,它与二次函数的图像交于A、B两点(其中点A在点B的左侧),与这个二次函数图像的对称轴交于点C(1)求点C的坐标;(2)设二次函数图像的顶点为D若点D与点C关于x轴对称,且ACD的面积等于3,求此二次函数的关系式;若CDAC,且ACD

30、的面积等于10,求此二次函数的关系式【答案】解:(1)c,二次函数图象的对称轴为直线.当时,点C的坐标为(2,).(2)点D与点C关于x轴对称,点D的坐标为(2,).CD=3.设,由得:,解得m=0. A(0,0)由A(0,0)、D(2,)得:,解得:二次函数的关系式为.设,如答图,过点A作AECD于E,则,.CD=AC,CD= .由得,解得:m=2或m=6(舍去).m=2. ,CD=5.当a0时,则点D在点C下方,.由、得:,解得:二次函数的关系式为.当a0时,则点D在点C上方,.由、得:,解得:二次函数的关系式为.【考点】二次函数综合题; 二次函数与一次函数的交点问题;三角形的面积公式;待

31、定系数法的应用;曲线上点的坐标与方程的关系;勾股定理;二次函数的性质;轴对称的性质;方程思想和分类思想的应用.【分析】(1)求出对称轴,然后求出对称轴与一次函数的交点,即点C的坐标.(2)先求出点D的坐标,设A坐标为,然后根据面积为3,求出m的值,得出点A的坐标,最后根据待定系数法求出a、c的值,即可求出解析式.作辅助线:过点A作AECD于E,设A坐标为,由根据面积为10,求出m的值,然后求出点A坐标以及CD的长度,分a0和a0两种情况讨论:分别求出点D的坐标,代入求出二次函数的解析式10. (2015年江苏无锡10分)如图,C为AOB的边OA上一点,OC6,N为边OB上异于点O的一动点,P是

32、线段05上一点,过点P分别作PQOA交OB于点Q,PMOB交OA于点M(1)若AOB=60,OM=4,OQ=1,求证:05OB;(2)当点N在边OB上运动时,四边形OMPQ始终保持为菱形;问:的值是否发生变化?如果变化,求出其取值范围;如果不变,请说明理由;设菱形OMPQ的面积为S1,NOC的面积为S2,求的取值范围【答案】解:(1)证明:如答图,过点P作PEOA于点E,PQOA,PMOB,四边形OMPQ为平行四边形.OQ=1,AOB=60,PM=OQ=1,PME=AOB=60. PCE=30. CPM=90,又PMOB,05O=CPM=90,即05OB.(2)的值不发生变化,理由如下:设,四

33、边形OMPQ为菱形,.PQOA,NQP=O.又QNP=ONC,NQPNOC.,即, 化简,得.不变化.如答图,过点P作PEOA于点E,过点N作NFOA于点F,设,则,PMOB,MCP=O.又PCM=NCO,CPM05O. .0x6,根据二次函数的图象可知, 【考点】相似形综合题;单动点问题;定值问题;锐角三角函数定义;特殊角的三角函数值;相似三角形的判定和性质;二次函数的性质;平行四边形的判定和性质;菱形的性质.【分析】(1)作辅助性线,过点P作PEOA于E,利用两组对边平行的四边形为平行四边形得到OMPQ为平行四边形,利用平行四边形的对边相等,对角相等得到PM=OQ=1,PME=AOB=60

34、,进而求出PE与ME的长,得到CE的长,求出tanPCE的值,利用特殊角的三角函数值求出PCE的度数,得到PM于NC垂直,而PM与ON平行,即可得到05与OB垂直.(2)的值不发生变化,理由如下:设OM=x,ON=y,根据OMPQ为菱形,得到PM=PQ=OQ=x,QN=yx,根据平行得到NQP与NOC相似,由相似得比例即可确定出所求式子的值. 作辅助性线,过点P作PEOA于点E,过点N作NFOA于点F,表示出菱形OMPQ的面积为S1,NOC的面积为S2,得到,由PM与OB平行,得到CPM与05O相似,由相似得比例求出所求式子的范围即可11. (2015年江苏徐州8分)为加强公民的节水意识,合理

35、利用水资源。某市对居民用水实行阶梯水价,居民家庭每月用水量划分为三个阶梯,一、二、三级阶梯用水的单价之比等于11.52. 下图折线表示实行阶梯水价后每月水费y(元)与用水量xm之间的函数关系. 其中线段AB表示第二级阶梯时y与x之间的函数关系.(1)写出点B的实际意义;(2)求线段AB所在直线的表达式;(3)某户5月份按照阶梯水价应缴水费102元,其相应用水量为多少立方米?【答案】解:(1)图中B点的实际意义表示当用水25m时,所交水费为90元(2)设第一阶梯用水的单价为x元/m,则第二阶梯用水单价为1.5 x元/m.设A(a,45),则,解得,.A(15,45),B(25,90).设线段AB

36、所在直线的表达式为y=kxb,则,解得.线段AB所在直线的表达式为(3)设该户5月份用水量为xm(x 90),由第(2)知第二阶梯水的单价为4.5元/m,第三阶梯水的单价为6元/m,则根据题意得,解得,x=27.答:该用户5月份用水量为27m【考点】一次函数和一元一次方程的应用;直线上点的坐标与方程的关系;待定系数法的应用.【分析】(1)根据坐标系横、纵坐标的意义作答即可.(2)求出点A的坐标,即可由待定系数法求出线段AB所在直线的表达式.(3)根据“5月份按照阶梯水价应缴水费102元”列方程求解即可.12. (2015年江苏徐州12分)如图,在平面直角坐标系中,点A(10,0),以OA为直径

37、在第一象限内作半圆,B为半圆上一点,连接AB并延长至C,使BC=AB,过C作CDx轴于点D,交线段OB于点E,已知CD=8,抛物线经过O、E、A三点.(1)OBA= ;(2)求抛物线的函数表达式;(3)若P为抛物线上位于第一象限内的一个动点,以P、O、A、E为顶点的四边形面积记作S,则S取何值时,相应的点P有且只有3个?【答案】解:(1)90.(2)如答图1,连接OC, 由(1)知OBAC,又AB=BC,OB是的垂直平分线.OC=OA=10.在RtOCD中,OC=10,CD=8,OD=6.C(6,8),B(8,4).OB所在直线的函数关系为.又E点的横坐标为6,E点纵坐标为3,即E(6,3)抛

38、物线过O(0,0),E(6,3) ,A(10,0),设此抛物线的函数关系式为,把E点坐标代入得,解得.此抛物线的函数关系式为,即(3)设点,若点P在CD的左侧,延长OP交CD于Q,如答图2,OP所在直线函数关系式为:,当x=6时,即Q点纵坐标为.S四边形POAE= SOAE SOPE= SOAE SOQESPQE=.若点P在CD的右侧,延长AP交CD于Q,如答图3,A(10,0),设AP所在直线方程为:y=kxb,把P和A坐标代入得,解得.AP所在直线方程为:.当x=6时,即Q点纵坐标为.QE=.S四边形POAE= SOAE SAPE= SOAE SAQE SPQE=.当P在CD右侧时,四边形

39、POAE的面积最大值为16,此时点P的位置就一个,令,解得,.当P在CD左侧时,四边形POAE的面积等于16的对应P的位置有两个.综上知,以P、O、A、E为顶点的四边形面积S等于16时,相应的点P有且只有3个【考点】二次函数综合题;单动点问题;圆周角定理;线段垂直平分线的性质;勾股定理;待定系数洪都拉斯应用;曲线上点的坐标与方程的关系;分类思想、转换思想和方程思想的应用.【分析】(1)根据直径所对的圆周角定理直接得出结论.(2)作辅助线:连接OC,根据线段垂直平分线的性质和勾股定理求出点E、A的坐标,从而应用待定系数法求出抛物线的函数关系式.(3)设点,分点P在CD的左侧和右侧两种情况求出S四

40、边形POAE关于的二次函数关系式,根据二次函数的最值原理求解即可.13. (2015年江苏盐城12分)知识迁移 我们知道,函数的图像是由二次函数的图像向右平移m个单位,再向上平移n个单位得到.类似地,函数的图像是由反比例函数的图像向右平移m个单位,再向上平移n个单位得到,其对称中心坐标为(m,n). 理解应用 函数的图像可以由函数的图像向右平移 个单位,再向上平移 个单位得到,其对称中心坐标为 灵活运用 如图,在平面直角坐标系xOy中,请根据所给的的图像画出函数的图像,并根据该图像指出,当x在什么范围内变化时,?实际应用 某老师对一位学生的学习情况进行跟踪研究.假设刚学完新知识时的记忆存留量为

41、1.新知识学习后经过的时间为x,发现该生的记忆存留量随x变化的函数关系为;若在(4)时进行一次复习,发现他复习后的记忆存留量是复习前的2倍(复习时间忽略不计),且复习后的记忆存留量随x变化的函数关系为.如果记忆存留量为时是复习的“最佳时机点”,且他第一次复习是在“最佳时机点”进行的,那么当x为何值时,是他第二次复习的“最佳时机点”?【答案】解:理解应用:1;1;(1,1).灵活运用:函数的图像如答图:由图可知,当时,.实际应用:当时,由解得.当进行第一次复习时,复习后的记忆存留量变为1.点(4,1)在函数的图象上.由解得.由解得.当时,是他第二次复习的“最佳时机点”.【考点】阅读理解型问题;图

42、象的平移;反比例函数的性质;曲线上点的坐标与方程的关系;数形结合思想和方程思想的应用.【分析】理解应用:根据“知识迁移”得到双曲线的平移变换的规律:上加下减;右减左加.灵活运用:根据平移规律性作出图象,并找出函数图象在直线之上时的取值范围.实际应用:先求出第一次复习的“最佳时机点”(4,1),代入,求出,从而求出第二次复习的“最佳时机点”.14. (2015年江苏盐城12分)如图,在平面直角坐标系xOy中,将抛物线的对称轴绕着点P(,2)顺时针旋转45后与该抛物线交于A、B两点,点Q是该抛物线上的一点.(1)求直线AB的函数表达式;(2)如图,若点Q在直线AB的下方,求点Q到直线AB的距离的最

43、大值;(3)如图,若点Q在y轴左侧,且点T(0,t)(t2)是直线PO上一点,当以P、B、Q为顶点的三角形与PAT相似时,求所有满足条件的t的值.【答案】解:(1)如答图1,设直线AB与轴的交点为M,P(,2),.设直线AB的解析式为,则,解得.直线AB的解析式为.(2)如答图2,过点Q作轴的垂线QC,交AB于点C,再过点Q作直线AB的垂线,垂足为点D,根据条件可知,是等腰直角三角形.设,则,.当时,点Q到直线AB的距离的最大值为.(3),中必有一角等于45.由图可知,不合题意.若,如答图3,过点B作轴的平行线与轴和抛物线分别交于点,此时,.根据抛物线的轴对称性质,知,是等腰直角三角形.与相似

44、,且,也是等腰直角三角形.i)若,联立,解得或. .,此时,.ii)若,此时,.若,是情况之一,答案同上.如答图4,5,过点B作轴的平行线与轴和抛物线分别交于点,以点为圆心,为半径画圆,则都在上,设与y轴左侧的抛物线交于另一点.根据圆周角定理,点也符合要求.设,由得解得或,而,故.可证是等边三角形,.则在中,.i)若,如答图4,过点作轴于点,则,.,此时,.ii)若,如答图5,过点作轴于点,设,则.,.,此时,.综上所述,所有满足条件的t的值为或或或.【考点】二次函数综合题;线动旋转和相似三角形存在性问题;待定系数法的应用;曲线上点的坐标与方程的关系;等腰直角三角形的判定和性质;含30度角直角

45、三角形的性质;二次函数最值;勾股定理;圆周角定理;分类思想、数形结合思想、方程思想的应用.【分析】(1)根据旋转的性质得到等腰直角三角形,从而得到解决点M的坐标,进而应用待定系数法即可求得直线AB的解析式.(2)作辅助线“过点Q作轴的垂线QC,交AB于点C,再过点Q作直线AB的垂线,垂足为点D”,设,求出关于的二次函数,应用二次函数最值原理即可求解.(3)分,三种情况讨论即可.15. (2015年江苏扬州12分)科研所计划建一幢宿舍楼,因为科研所实验中会产生辐射,所以需要有两项配套工程:在科研所到宿舍楼之间修一条笔直的道路;对宿舍楼进行防辐射处理,已知防辐射费万元与科研所到宿舍楼的距离之间的关

46、系式为:,当科研所到宿舍楼的距离为1时,防辐射费用为720万元;当科研所到宿舍楼的距离为9或大于9时,辐射影响忽略不计,不进行防辐射处理,设每公里修路的费用为万元,配套工程费=防辐射费+修路费.(1)当科研所到宿舍楼的距离为时,防辐射费= 万元; , ; (2)若每公里修路的费用为90万元,求当科研所到宿舍楼的距离为多少时,配套工程费最少?(3)如果配套工程费不超过675万元,且科研所到宿舍楼的距离小于9,求每公里修路费用万元的最大值.【答案】解:(1)0;1080.(2),当,即时,.(3),配套工程费不超过675万元,.设,则,当,即时,.每公里修路费用万元的最大值为80万元.【考点】函数

47、综合题(实际应用);应用待定系数法和由实际问题列函数关系式;二次函数的最值;整体思想和换元法的应用.【分析】(1)当时,;当时,解得.(2)求出关于的函数,应用整体思想,求出的二次函数,应用二次函数的最值原理求解.(3)求出关于的函数,应用整体思想,求出的二次函数,应用二次函数的最值原理求解.16. (2015年江苏扬州12分)如图,直线线段于点,点在上,且,点是直线上的动点,作点关于直线的对称点,直线与直线相交于点,连接.(1)如图1,若点与点重合,则= ,线段与的比值为 ; (2)如图2,若点与点不重合,设过三点的圆与直线相交于,连接.求证:;(3)如图3,则满足条件的点都在一个确定的圆上

48、,在以下两小题中选做一题:如果你能发现这个确定圆的圆心和半径,那么不必写出发现过程,只要证明这个圆上的任意一点Q,都满足QA=2QB;如果你不能发现这个确定圆的圆心和半径,那么请取几个特殊位置的点,如点在直线上、点与点重合等进行探究,求这个圆的半径.【答案】解:(1)30;2.(2)证明:点关于直线的对称点,.是圆内接四边形的外角,.如答图1,连接交于点,过点作交于点,点关于直线的对称点,是的垂直平分线.,.,.(3)两小题中选做一题:如答图2,在的延长线上取点,使,以点为圆心,2为半径画圆,取圆上任一点,连接,在上取点,使,连接,作点关于直线的对称点,连接交于点,过点作交于点,点关于直线的对

49、称点,是的垂直平分线. .又,.点、重合.,.若点在线段上,由知,点与点重合,点与点重合,这个圆的半径为2.若点在射线的延长线上,由知,点与点重合,这个圆的半径为2.等.【考点】开放型;单动点和轴对称问题;轴对称的性质;锐角三角函数定义;特殊角的三角函数值;圆内接四边形的性质;等腰三角形的判定;线段垂直平分线的性质;平行线分线段成比例的性质.【分析】(1),.,线段与的比值为2.(2)一方面证明得到;另一方面,由是圆内接四边形的外角得到,从而得到,进而根据等角对等边的判定得证.作辅助线“连接交于点,过点作交于点”,应用线段垂直平分线的性质和平行线分线段成比例的性质证明.(3)如答图2,在的延长

50、线上取点,使,以点为圆心,2为半径画圆,取圆上任一点,连接,在上取点,使,连接,作点关于直线的对称点,连接交于点,过点作交于点,此圆即为所求定圆.取特殊点探讨,答案不唯一.17. (2015年江苏常州10分)如图,一次函数的图象与x轴、y轴分别相交于点A、B,过点A作x轴的垂线l,点P为直线l上的动点,点Q为直线AB与OAP外接圆的交点,点P、Q与点A都不重合(1)写出点A的坐标;(2)当点P在直线l上运动时,是否存在点P使得OQB与APQ全等?如果存在,求出点P的坐标;如果不存在,请说明理由(3)若点M在直线l上,且POM=90,记OAP外接圆和OAM外接圆的面积分别是S1、S2,求的值【答

51、案】解(1)(4,0).(2)存在理由如下:如答图1所示:将x=0代入得:,OB=4.由(1)可知OA=4.在RtBOA中,由勾股定理得:BOQAQP,QA=OB=4,BQ=PA,PA= 点P的坐标为(4,)(3)如答图2所示:OPOM,1+3=90又2+1=90,2=3又OAP=OAM=90,OAMPAO.设AP=m,则:,在RtOAP中,.在RtOAM中,.【考点】圆的综合题;单动点问题;直线上点的坐标与方程的关系;勾股定理;全等三角形的性质;相似三角形的判定和性质【分析】(1)将y=0代入,求得x的值,从而得到点A的坐标.(2)首先根据题意画出图形,然后在RtBOA中,由勾股定理求得AB

52、的长度,由全等三角形的性质求得QA的长度,从而得到BQ的长,然后根据PA=BQ求得PA的长度,从而可求得点P的坐标.(3)首先根据题意画出图形,设AP=m,由OAMPAO,可求得AM的长度,然后根据勾股定理可求得两圆的直径(用含m的式子表示),然后利用圆的面积公式求得两圆的面积,最后代入所求代数式求解即可18. (2015年江苏常州10分)如图,反比例函数的图象与一次函数的图象交于点A、B,点B的横坐标是4点P是第一象限内反比例函数图象上的动点,且在直线AB的上方(1)若点P的坐标是(1,4),直接写出k的值和PAB的面积;(2)设直线PA、PB与x轴分别交于点M、N,求证:PMN是等腰三角形

53、;(3)设点Q是反比例函数图象上位于P、B之间的动点(与点P、B不重合),连接AQ、BQ,比较PAQ与PBQ的大小,并说明理由【答案】解:(1)(2)证明:如答图2,过点P作PHx轴于点H, 设直线PB的解析式为,把点P(1,4)、B(4,1)代入,得,解得:,直线PB的解析式为当y=0时,x=5,点N(5,0)同理可得M(3,0),. MH=NH. PH垂直平分MN.PM=PN. PMN是等腰三角形.(3)PAQ=PBQ理由如下:如答图3,过点Q作QTx轴于T,设AQ交x轴于D,QB的延长线交x轴于E, 可设点,直线AQ的解析式为,则,解得:,直线AQ的解析式为当y=0时,解得:,D(,0)

54、同理可得E(,0),.DT=ET.QT垂直平分DE,QD=QE. QDE=QEDMDA=QDE,MDA=QEDPM=PN,PMN=PNMPAQ=PMNMDA,PBQ=NBE=PNMQED,PAQ=PBQ【考点】反比例函数和一次函数综合题;单动点问题;待定系数法的应用;曲线上点的坐标与方程的关系;三角形的外角性质;线段垂直平分线的性质;等腰三角形的判定和性质【分析】(1)如答图1,过点A作ARy轴于R,过点P作PSy轴于S,连接PO,设AP与y轴交于点C,把x=4代入,得到点B的坐标为(4,1),把点B(4,1)代入,得k=4解方程组,得到点A的坐标为(4,1),则点A与点B关于原点对称,OA=

55、OB. 设直线AP的解析式为,把点A(4,1)、P(1,4)代入,求得直线AP的解析式为,则点C的坐标(0,3),OC=3,.(2)作辅助线“过点P作PHx轴于点H”,用待定系数法求出直线PB的解析式,从而得到点N的坐标,同理可得到点M的坐标,进而得到MH=NH,根据垂直平分线的性质可得PM=PN,即PMN是等腰三角形;(3)作辅助线“过点Q作QTx轴于T,设AQ交x轴于D,QB的延长线交x轴于E”,设点Q为,运用待定系数法求出直线AQ的解析式,即可得到点D的坐标为(,0),同理可得E(,0),从而得到DT=ET,根据垂直平分线的性质可得QD=QE,则有QDE=QED然后根据对顶角相等及三角形

56、外角的性质,就可得到PAQ=PBQ19. (2015年江苏淮安12分)阅读理解:如图,如果四边形ABCD满足AB=AD,CB=CD,B=D=900,那么我们把这样的四边形叫做“完美筝形”.将一张如图所示的“完美筝形”纸片ABCD先折叠成如图所示的形状,再展开得到图,其中CE、CF为折痕,BCD=ECF=FCD,点B为点B的对应点,点D为点D的对应点,连接EB、FD相交于点O.简单应用:(1)在平行四边形、矩形、菱形、正方形四种图形中,一定为“完美筝形”的是 ;(2)当图中的时,AEB ;(3)当图中的四边形AECF为菱形时,对应图中的“完美筝形”有 个(包含四边形ABCD).拓展提升: 当图中

57、的时,连接AB,请探求ABE的度数,并说明理由.【答案】解:简单应用:(1)正方形.(2)80.(3)5.拓展提升:,理由如下:如答图,连接,且AB=AD,四边形ABCD是正方形. .由折叠对称的性质,得,点在以为直径的圆上.由对称性,知,.【考点】新定义和阅读理解型问题;折叠问题;正方形的判定和性质;折叠对称的性质;圆周角定理;等腰直角三角形的性质.【分析】简单应用:(1)根据“完美筝形”的定义,知只有正方形是“完美筝形”.(2),根据折叠对称的性质,得.,. .(3)根据“完美筝形”的定义,可知是“完美筝形”.拓展提升:作辅助线“连接”,由题意判定四边形ABCD是正方形,从而证明点在以为直

58、径的圆上,即可得出.20. (2015年江苏淮安12分)如图,在RtABC中,ACB90,AC=6,BC=8. 动点M从点A出发,以每秒1个单位长度的速度沿AB向点B匀速运动;同时,动点N从点B出发,以每秒3个单位长度的速度沿BA向点A匀速运动. 过线段MN的中点G作边AB的垂线,垂足为点G,交ABC的另一边于点P,连接PM、PN,当点N运动到点A时,M、N两点同时停止运动,设运动时间为t秒.(1)当t 秒时,动点M、N相遇;(2)设PMN的面积为S,求S与t之间的函数关系式;(3)取线段PM的中点K,连接KA、KC,在整个运动过程中,KAC的面积是否变化?若变化,直接写出它的最大值和最小值;

59、若不变化,请说明理由.【答案】解:(1)2.5.(2)在整个运动过程中,分三段:点与点重合前;点与点重合后点M、N相遇前;点与点重合后点M、N相遇后.当点与点重合时,如答图1,.根据勾股定理,得,解得.由(1)动点M、N相遇时,.当点N运动到点A时,由得.当时,如题图,.,即.当时,如答图2,.,即.当时,如答图3,.,即.综上所述,S与t之间的函数关系式为.(3)在整个运动过程中,KAC的面积变化,它的最大值是4,最小值是.【考点】双动点问题;由实际问题列函数关系式(几何问题);勾股定理;相似三角形的判定和性质;一次函数的应用和性质;三角形和梯形的中位线定理;分类思想和数形结合思想的应用.【

60、分析】(1)在RtABC中,ACB900,AC=6,BC=8,根据勾股定理,得.点M的速度是每秒1个单位长度,点N的速度是每秒3个单位长度,动点M、N相遇时,有秒.(2)分点与点重合前;点与点重合后点M、N相遇前;点与点重合后点M、N相遇后三种情况讨论即可.(3)分点与点重合前;点与点重合后点M、N相遇前;点与点重合后点M、N相遇后三种情况讨论,如答图,分别过点作的垂线,垂足分别为点,易得当时,如答图4,易得,.当时,最大值为;当时,最小值为.当或时,如答图4,5,易得,.当时,最大值为4; 最小值不大于.综上所述,在整个运动过程中,KAC的面积变化,它的最大值是4,最小值是.21. (201

61、5年江苏南通13分)如图,RtABC中,C=90,AB=15,BC=9,点P,Q分别在BC,AC上,CP=3x,CQ=4x(0x3)把PCQ绕点P旋转,得到PDE,点D落在线段PQ上(1)求证:PQAB;(2)若点D在BAC的平分线上,求CP的长;(3)若PDE与ABC重叠部分图形的周长为T,且12T16,求x的取值范围【答案】解:(1)证明:在RtABC中,AB=15,BC=9,又C=C,PQCBAC. CPQ=B. PQAB.(2)如答图1,连接AD,PQAB,ADQ=DAB点D在BAC的平分线上,DAQ=DAB.ADQ=DAQ. AQ=DQ在RtCPQ中,CP=3x,CQ=4x,PQ=5

62、x.PD=PC=3x,DQ=2xAQ=124x,124x=2x,解得x=2.CP=3x=6(3)当点E在AB上时,PQAB,DPE=PEBCPQ=DPE,CPQ=B,B=PEB. PB=PE=5x.3x+5x=9,解得当0x时,此时0T.当0x时,T随x的增大而增大,12T16,当12T时,1x.当x3时,如答图2,设PE交AB于点G,DE交AB于F,作GHFQ,垂足为H,HG=DF,FG=DH,RtPHGRtPDE.PG=PB=93x,.,此时,T18当x3时,T随x的增大而增大.12T16,当T16时,x.综上所述,当12T16时,x的取值范围是1x【考点】面动旋转问题;勾股定理;相似三角

63、形的判定和性质;平行的判定和性质;方程思想、函数思想、分类思想的应用【分析】(1)先根据勾股定理求出AC的长,再由相似三角形的判定定理得出PQCBAC,由相似三角形的性质得出CPQ=B,由此可得出结论.(2)连接AD,根据PQAB可知ADQ=DAB,再由点D在BAC的平分线上,得出DAQ=DAB,故ADQ=DAQ,AQ=DQ在RtCPQ中根据勾股定理可知,AQ=124x,故可得出x的值,进而得出结论.(3)当点E在AB上时,根据等腰三角形的性质求出x的值,再分0x;x3两种情况进行分类讨论22. (2015年江苏南通13分)已知抛物线(m是常数)的顶点为P,直线.(1)求证:点P在直线l上;(

64、2)当m=3时,抛物线与x轴交于A,B两点,与y轴交于点C,与直线l的另一个交点为Q,M是x轴下方抛物线上的一点,ACM=PAQ(如图),求点M的坐标;(3)若以抛物线和直线l的两个交点及坐标原点为顶点的三角形是等腰三角形,请直接写出所有符合条件的m的值【答案】解:(1)证明:,点P的坐标为(m,m1),当x=m时,y=x1=m1,点P在直线l上.(2)当m=3时,抛物线解析式为,当y=0时,解得x1=1,x2=5,则A(5,0).当x=0时,则C(0,5).联立方程组,解得或,P(3,4),Q(2,3).如答图,过点M作MEy轴于E,过点P作PFx轴于F,过点Q作QGx轴于G, OA=OC=

65、5,OAC为等腰直角三角形.ACO=45. MCE=45ACM.QG=3,OG=2,AG=OAOG=3=QG.AQG为等腰直角三角形. QAG=45.ACM=PAQ,APF=MCE.RtCMERtPAF. .设,则.,整理得,解得x1=0(舍去),x2=4,点M的坐标为(4,3).(3)m的值为0,【考点】二次函数综合题;曲线上点的坐标与方程的关系;等腰直角三角形的判定和性质;相似三角形的判定和性质;勾股定理;分类思想和方程思想的应用.【分析】(1)利用配方法求得点P的坐标,然后根据一次函数图象上点的坐标特征判断点P在直线l上.(2)当m=3时,抛物线解析式为,根据抛物线与x轴的交点问题求出A

66、(5,0),易得C(0,5),通过解方程组得P(3,4),Q(2,3),如图,作MEy轴于E,PFx轴于F,QGx轴于G,证明RtCMERtPAF,利用相似得,设,则,解之即可求得点M的坐标.(3)解方程组得或,P(m,m1),Q(m+1,m).,.当PQ=OQ时,解得;当PQ=OP时,解得;当OP=OQ时,解得m=0.综上所述,m的值为0,23. (2015年江苏宿迁10分)已知:O上两个定点A,B和两个动点C,D,AC与BD交于点E(1)如图1,求证:EAEC=EBED;(2)如图2,若,AD是O的直径,求证:ADAC=2BDBC;(3)如图3,若ACBD,点O到AD的距离为2,求BC的长

67、【答案】解:(1)证明:EAD=EBC,BCE=ADE,AEDBEC.EAEC=EBED.(2)证明:如答图1,连接OB,OB交AC于点F,BAC=ADB=ACB,且AF=CF=AC又AD为O直径,ABC=90.又CFB=90,CFB=ABC. CBFABD,即ADAC=2BDBC.(3)如答图2,连接AO并延长交O于F,连接DF,过点O作OHAD于H,AF为O的直径,ADF=90. AH=DH,OHDF.AO=OF,DF=2OH=4.ACBD,AEB=ADF=90.ABD=F,ABEADF,BAE=DAF. BC=DF=4【考点】圆的综合题;双动点问题;圆周角定理;相似三角形的判定和性质;垂

68、径定理;弧、弦的关系;三角形的中位线定理【分析】(1)根据同弧所对的圆周角相等得到角相等,从而证得AEDBEC,于是得到结论.(2)作辅助线“连接OB,OB交AC于点F”由得到BAC=ADB=ACB,且AF=CF=AC,证得CBFABD即可得到结论.(3)作辅助线“连接AO并延长交O于F,连接DF,过点O作OHAD于H”,得到AF为O的直径,从而ADF=90,根据三角形的中位线定理有DF=2OH=4,通过ABEADF,得到BAE=DAF,于是结论可得24. (2015年江苏宿迁10分)如图,在平面直角坐标系中,正方形ABCD和正方形DEFG的边长分别为2a,2b,点A,D,G在y轴上,坐标原点

69、O为AD的中点,抛物线过C,F两点,连接FD并延长交抛物线于点M(1)若a=1,求m和b的值;(2)求的值;(3)判断以FM为直径的圆与AB所在直线的位置关系,并说明理由【答案】解:(1)a=1,正方形ABCD的边长为2,坐标原点O为AD的中点,C(2,1)抛物线过C点,1=4m,解得.抛物线解析式为,将F(2b,2b+1)代入,得,解得(负值舍去),.(2)正方形ABCD的边长为2a,坐标原点O为AD的中点,C(2a,a)抛物线过C点,解得.抛物线解析式为.将F(2b,2b+1)代入,得,解得(负值舍去).(3)以FM为直径的圆与AB所在直线相切理由如下:D(0,a),可设直线FD的解析式为

70、. 由(2)得,代入得k=1.直线FD的解析式为联立,解得或.M点坐标为以FM为直径的圆的圆心的坐标为(2a,3a).如答图,过点作于点,到直线AB()的距离.以FM为直径的圆的半径.以FM为直径的圆与AB所在直线相切【考点】二次函数综合题;待定系数法的应用;曲线上点的坐标与方程的关系;正方形的性质;直线与圆满的位置关系的判定;勾股定理;数形结合思想和方程思想的应用【分析】(1)由a=1,根据正方形的性质及已知条件得出C(2,1)将C点坐标代入,求出,则抛物线解析式为,再将F(2b,2b+1)代入,即可求出b的值.(2)由正方形ABCD的边长为2a,坐标原点O为AD的中点,得出C(2a,a)将

71、C点坐标代入,求出,则抛物线解析式为,再将F(2b,2b+a)代入,整理,把a看作常数,利用求根公式得出(负值舍去),从而得到.(3)先利用待定系数法求出直线FD的解析式为,再求出M,又,利用中点坐标公式得到以FM为直径的圆的圆心O的坐标为(2a,3a),再求出O到直线AB()的距离的值,以FM为直径的圆的半径r的值,由=r,根据直线与圆的位置关系可得以FM为直径的圆与AB所在直线相切25. (2015年江苏镇江9分)【发现】如图ACB=ADB=90,那么点D在经过A,B,C三点的圆上(如图)【思考】如图,如果ACB=ADB=(90)(点C,D在AB的同侧),那么点D还在经过A,B,C三点的圆

72、上吗?请证明点D也不在O内【应用】利用【发现】和【思考】中的结论解决问题:若四边形ABCD中,ADBC,CAD=90,点E在边AB上,CEDE(1)作ADF=AED,交CA的延长线于点F(如图),求证:DF为RtACD的外接圆的切线;(2)如图,点G在BC的延长线上,BGE=BAC,已知,AD=1,求DG的长【答案】解:【思考】点D还在经过A,B,C三点的圆上.如答图1,假设点D在O内,延长AD交O于点E,连接BE,则AEB=ACB,ADE是BDE的外角,ADBAEB.ADBACB.ADBACB,这与条件ACB=ADB矛盾.点D也不在O内.【应用】(1)证明:如答图2,取CD的中点O,则点O是

73、RtACD的外心,CAD=DEC=90,点E在O上. ACD=AED.FDA=AED,ACD=FDA.DAC=90,ACD+ADC=90. FDA+ADC=90.ODDF,DF为RtACD的外接圆的切线.(2)如答图3,BGE=BAC,点G在过C、A、E三点的圆上. 又过C、A、E三点的圆是RtACD的外接圆,即O,点G在O上.CD是直径,DGC=90.ADBC,ADG=90.DAC=90,四边形ACGD是矩形. DG=AC.,ACD=AED,.在RtACD中,AD=1,.【考点】阅读理解型问题;圆的综合题;圆周角定理;三角形的外角性质;矩形的判定和性质;锐角三角函数定义;勾股定理 【分析】【

74、思考】假设点D在O内,利用圆周角定理及三角形外角的性质,可证得与条件相矛盾的结论,从而证得点D不在O内.【应用】(1)作出RtACD的外接圆,由发现可得点E在O上,则证得ACD=FDA,又因为ACD+ADC=90,于是有FDA+ADC=90,即可证得DF是圆的切线;(2)根据【发现】和【思考】可得点G在过C、A、E三点的圆O上,进而易证四边形AOGD是矩形,根据已知条件解直角三角形ACD可得AC的长,即DG的长26. (2015年江苏镇江10分)如图,二次函数的图象经过点(0,3),且当x=1时,y有最小值2(1)求a,b,c的值;(2)设二次函数(k为实数),它的图象的顶点为D当k=1时,求

75、二次函数的图象与x轴的交点坐标;请在二次函数与的图象上各找出一个点M,N,不论k取何值,这两个点始终关于x轴对称,直接写出点M,N的坐标(点M在点N的上方);过点M的一次函数的图象与二次函数的图象交于另一点P,当k为何值时,点D在NMP的平分线上?当k取2,1,0,1,2时,通过计算,得到对应的抛物线的顶点分别为(1,6,),(0,5),(1,2),(2,3),(3,10),请问:顶点的横、纵坐标是变量吗?纵坐标是如何随横坐标的变化而变化的?【答案】解:(1)二次函数当x=1时,y有最小值2,可设.将(0,3)代入,得a=1,.a=1,b=2,c=3. (2)当k=1时,令,解得,图象与轴的交

76、点坐标(,0),(,0).M(1,6),N(1,6).如答图,设直线与轴交于点A,MD与轴交于点B,MN与轴交于点E,过点B作BCAM于点C,经过M(1,6),解得.,则A(7,0).MNx轴,E点的横坐标为1. AE=8.ME=6,MA=10MD平分NMP,MNx轴,BC=BE.设BC=x,则AB=8x,ABCAME,.,解得x=3. B(2,0).MD的函数表达式为,.把,代入,得,解得.,舍去.是当顶点的横坐标大于1时,纵坐标随横坐标的增大而增大,当顶点的横坐标小于1时,纵坐标随横坐标的增大而减小【考点】阅读理解型问题;二次函数综合题;二次函数的性质;轴对称的性质;曲线上点的坐标与方程的

77、关系;角平分线的性质;勾股定理;相似三角形的判定和性质;方程思想和数形结合思想的应用【分析】(1)利用顶点式的解析式求解即可.(2)当k=1时,令,解得x的值,即可得出图象与x轴的交点坐标.当x=1时,与的图象上点M,N,不论k取何值,这两个点始终关于x轴对称,可得M(1,6),N(1,6).由,经过M(1,6),可得t的值,由MNx轴,可得E点的横坐标为1,可得出AE,ME,MA的值设MD交AE于点B,作BCAM于点C,设BC=x,则AB=8x,由ABCAMN列式,可求出x的值,即可得出MD的函数表达式为y=2x+4再把点D代入,即可求出k的值样.观察可得出当顶点的横坐标大于1时,纵坐标随横坐标的增大而增大,当顶点的横坐标小于1时,纵坐标随横坐标的增大而减小

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 数学

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1