1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版数学八年级上册期末测评试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、化简的结果是()AaBa+1Ca1Da212、如图,在的正方形网格中有
2、两个格点A、B,连接,在网格中再找一个格点C,使得是等腰直角三角形,满足条件的格点C的个数是()A2B3C4D53、图中的小正方形边长都相等,若,则点Q可能是图中的()A点DB点CC点BD点A4、已知,n的值是AB2CD5、如图,在和中,则()A30B40C50D60二、多选题(5小题,每小题4分,共计20分)1、下列运算不正确的是()ABCD2、下列计算不正确的是()A(1)01BCD用科学记数法表示0.00001081.081053、如图,在中,的垂直平分线交于点D,交于点E,下 线 封 密 内 号学级年名姓 线 封 密 外 列结论正确的是()A平分B的周长等于CD点D是线段的中点4、如图
3、,在ABC中,AB=AC,BAD=CAD,则下列结论,正确的有()AABDACDBB=CCBD=CDDADBC5、若多项式能用完全平方公式进行因式分解,则m的值为()A2BC6D第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、若分式的值为负数,则x的取值范围是_2、如图,在四边形中,于,则的长为_3、如图,直线为线段的垂直平分线,交于,在直线上取一点,使得,得到第一个三角形;在射线上取一点,使得;得到第二个三角形;在射线上取一点,使得,得到第三个三角形依次这样作下去,则第2020个三角形中的度数为_4、图中A+B+C+D+E+F+G=_5、一批货物准备运往某地,有甲、乙
4、、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用次;甲、丙两车合运相同次数,运完这批货物,甲车共运吨;乙、丙两车合运相同次数,运完这批货物乙车共运吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为_ 元.(按每吨运费元计算)四、解答题(5小题,每小题8分,共计40分)1、如图是一个长为a,宽为b的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形(1)用含字母a,b的代数式表示矩形中空白部分的面积; 线 封 密 内 号学级年名姓 线 封 密 外 (2)当a3,b2时,求矩形中空白部分的面积2、已知,平分,点分别在上(1
5、)如图1,若于点,于点利用等腰三角形“三线合一”,将补成一个等边三角形,可得的数量关系为_请问:是否等于呢?如果是,请予以证明(2)如图2,若,则(1)中的结论是否仍然成立?若成立,请予以证明;若不成立,请说明理由3、解分式方程:4、阅读材料并解答问题:根据课本P100,我们已经知道,“多项式乘以多项式”法则可以用平面几何图形的面积来表示,如图1实际上还有一些代数等式也可以用这种形式来表示,例如:就可以用图2中、等图形的面积来表示(1)根据图1反映的平面几何图形的面积之间的数量关系,请用字母直接表示出“多项式乘以多项式”法则: ;(2)请直接写出图3所表示的代数等式: ;(3)试画出一个几何图
6、形,使它的面积能表示,并直接写出计算结果(请仿照图2中的图或图在几何图形上标出有关数量)5、阅读材料并完成习题:在数学中,我们会用“截长补短”的方法来构造全等三角形解决问题请看这个例题:如图1,在四边形ABCD中,BAD=BCD=90,AB=AD,若AC=2cm,求四边形ABCD的面积解:延长线段CB到E,使得BE=CD,连接AE,我们可以证明BAEDAC,根据全等三角形的性质得AE=AC=2, EAB=CAD,则EAC=EAB+BAC=DAC+BAC=BAD=90,得S四边形ABCD=SABC+SADC=SABC+SABE=SAEC,这样,四边形ABCD的面积就转化为等腰直角三角形EAC面积
7、(1)根据上面的思路,我们可以求得四边形ABCD的面积为 cm2(2)请你用上面学到的方法完成下面的习题如图2,已知FG=FN=HM=GH+MN=2cm,G=N=90,求五边形FGHMN的面积-参考答案-一、单选题1、B【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】先把原式转化成同分母的分式,然后相加,运用平方差公式把分子因式分解,然后分子分母同时除以公因式(a-1)即可.【详解】解:原式= ,故本题答案为:B.【考点】分式的化简是本题的考点,运用平方差公式把分子进行因式分解找到分子分母的公因式是解题的关键.2、B【解析】【分析】根据题意,结合图形,分两种情况讨论:AB为等腰
8、直角ABC底边;AB为等腰直角ABC其中的一条腰【详解】解:如图:分情况讨论:AB为等腰直角ABC底边时,符合条件的C点有0个;AB为等腰直角ABC其中的一条腰时,符合条件的C点有3个故共有3个点,故选:B【考点】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,数形结合的思想是数学解题中很重要的解题思想3、A【解析】【分析】根据全等三角形的判定即可解决问题【详解】解:观察图象可知MNPMFD故选:A【考点】本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型4、B【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】先把32m+2化为底
9、数为9的幂,再根据同底数幂的除法运算法则计算,最后比较指数的值即可【详解】32m+2=(32)m+1=9m+1,9m3m+2=9m9m+1=9-1=()2,n=2故选B【考点】本题考查同底数幂的乘法,同底数幂的除法,熟练掌握运算性质是解题的关键5、D【解析】【分析】由题意可证,有,由三角形内角和定理得,计算求解即可【详解】解:ABC和ADC均为直角三角形在和中故选D【考点】本题考查了三角形全等,三角形的内角和定理解题的关键在于找出角度的数量关系二、多选题1、ABC【解析】【分析】根据整式的混合运算法则分别计算即可【详解】解:A、,错误,符合题意;B、,错误,符合题意;C、,错误,符合题意;D、
10、,正确,不符合题意;故选:ABC【考点】本题考查了同类项,完全平方公式,同底数幂除法,幂的乘方等知识点,熟练掌握运算法则是解本题的关键2、ABCD【解析】【分析】根据负整数指数幂和科学计算法的计算方法进行求解判断即可 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:A、,故此选项符合题意;B、,故此选项符合题意;C、,故此选项符合题意;D、用科学记数法表示,故此选项符合题意;故选ABCD【考点】本题主要考查了负整数指数幂和科学计算法,解题的关键在于能够熟练掌握相关计算法则3、ABC【解析】【分析】由在ABC中,ABAC,A36,根据等边对等角与三角形内角和定理,即可求得ABC与C的度
11、数,又由AB的垂直平分线是DE,根据线段垂直平分线的性质,即可求得ADBD,继而求得ABD的度数,则可知BD平分ABC;可得BCD的周长等于ABBC,又可求得BDC的度数,求得ADBDBC,则可求得答案;注意排除法在解选择题中的应用【详解】解:在ABC中,ABAC,A36,ABCC72,AB的垂直平分线是DE,ADBD,ABDA36,DBCABCABD723636ABD,BD平分ABC,故A正确;BCD的周长为:BCCDBDBCCDADBCACBCAB,故B正确;DBC36,C72,BDC180DBCC72,BDCC,BDBC,ADBDBC,故C正确;BDCD,ADCD,点D不是线段AC的中点
12、,故D错误故选:ABC【考点】此题考查了等腰三角形的性质,线段垂直平分线的性质以及三角形内角和定理等知识此题综合性较强,但难度不大,解题的关键是注意数形结合思想的应用,注意等腰三角形的性质与等量代换4、ABCD【解析】【分析】由于,利用等边对等角,等腰三角形三线合一定理,可知,从而【详解】在中, 线 封 密 内 号学级年名姓 线 封 密 外 故选ABCD【考点】本题考查了等腰三角形的性质、三角形全等的判定,等腰三角形的角平分线,底边上的中线,底边的高相互重合5、BC【解析】【分析】完全平方式:,根据完全平方式的特点建立方程即可得到答案.【详解】解: 多项式能用完全平方公式进行因式分解, 或,或
13、 故选:BC【考点】本题考查的是利用完全平方公式分解因式,完全平方式的特点,掌握完全平方式的特点是解题的关键.三、填空题1、【解析】【分析】根据分式值为负的条件列出不等式求解即可【详解】解:0x-20,即故填:【考点】本题主要考查了分式值为负的条件,根据分式小于零的条件列出不等式成为解答本题的关键2、【解析】【分析】过点B作 交DC的延长线交于点F,证明 推出,可得,由此即可解决问题;【详解】解:过点B作交DC的延长线交于点F,如右图所示, , 线 封 密 内 号学级年名姓 线 封 密 外 , ,即,故答案为【考点】本题考查全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形
14、解决问题,属于中考常考题型3、【解析】【分析】根据前3个三角形总结出的规律,利用规律即可解题.【详解】第一个三角形中,第二个三角形中,同理,第三个三角形中,第2020个三角形中的度数为故答案为【考点】本题主要考查垂直平分线的性质,根据垂直平分线的性质找到规律是解题的关键.4、540【解析】【分析】根据三角形外角的性质可得,1=C+D,2=E+F,再根据五边形内角和解答即可 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:1=C+D,2=E+F,A+B+C+D+E+F+G=A+B+1+2+G=540故答案为:540【考点】本题考查了三角形外角的性质和五边形内角和利用三角形内角与外角的关
15、系把所求的角的度数归结到五边形中,利用五边形的内角和定理解答5、【解析】【分析】根据“甲、乙两车单独运这批货物分别用2a次、a次能运完”甲的效率应该为,乙的效率应该为,那么可知乙车每次货运量是甲车的2倍根据“若甲、丙两车合运相同次数运完这批货物时,甲车共运了180吨;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨”这两个等量关系来列方程【详解】设这批货物共有T吨,甲车每次运t甲吨,乙车每次运t乙吨,2at甲=T,at乙=T,t甲:t乙=1:2,由题意列方程:t乙=2t甲, 解得T=540.甲车运180吨,丙车运540180=360吨,丙车每次运货量也是甲车的2倍,甲车车主应得运费
16、(元),故答案为.【考点】考查分式方程的应用,读懂题目,找出题目中的等量关系是解题的关键.四、解答题1、(1)Sabab+1;(2)矩形中空白部分的面积为2;【解析】【分析】(1)空白区域面积=矩形面积-两个阴影平行四边形面积+中间重叠平行四边形面积;(2)将a=3,b=2代入(1)中即可;【详解】(1)Sabab+1;(2)当a3,b2时,S632+12;【考点】本题考查阴影部分面积,平行四边形面积,代数式求值;能够准确求出阴影部分面积是解题的关键2、(1)(或),理由见解析;,理由见解析;(2)仍成立,理由见解析 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】(1)由题意利
17、用角平分线的性质以及含角的直角三角形性质进行分析即可;根据题意利用的结论进行等量代换求解即可;(2)根据题意过点分别作的垂线,垂足分别为,进而利用全等三角形判定得出,以此进行分析即可【详解】解:(1)(或)平分,又,利用等腰三角形“三线合一”,将补成一个等边三角形,可知证明:由知,同理,平分,又,,(2)仍成立证明:过点分别作的垂线,垂足分别为平分,又由(1)中知【考点】本题考查等腰三角形性质以及全等三角形判定,熟练掌握角平分线的性质以及含角的直角三角形性质和全等三角形判定定理是解题的关键3、【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【
18、详解】方程, 线 封 密 内 号学级年名姓 线 封 密 外 ,经检验是分式方程的解,原分式方程的解为【考点】本题考查了解分式方程利用了转化的思想,解分式方程要注意检验4、(1);(2);(3)见解析,【解析】【分析】(1)根据图1反映的平面几何图形的面积之间的数量关系,即可表示;(2)根据图3反映的平面几何图形的面积即可表示代数等式;(3)根据可知,表示为长为,宽为的矩形的面积,画图即可【详解】(1),故答案为:;(2)由图可得:,故答案为:;(3)表示的图形如下所示:【考点】本题考查多项式乘多项式的应用,掌握平面几何图形的面积表示多项式乘多项式是解题的关键5、(1)2;(2)4【解析】【分析】(1)根据题意可直接求等腰直角三角形EAC的面积即可;(2)延长MN到K,使NK=GH,连接FK、FH、FM,由(1)易证,则有FK=FH,因为HM=GH+MN易证,故可求解【详解】(1)由题意知,故答案为2;(2)延长MN到K,使NK=GH,连接FK、FH、FM,如图所示: 线 封 密 内 号学级年名姓 线 封 密 外 FG=FN=HM=GH+MN=2cm,G=N=90,FNK=FGH=90,FH=FK,又FM=FM,HM=KM=MN+GH=MN+NK,MK=FN=2cm,【考点】本题主要考查全等三角形的性质与判定,关键是根据截长补短法及割补法求面积的运用