ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:116.50KB ,
资源ID:279660      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-279660-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(江苏版2018年高考数学一轮复习专题5.4平面向量应用讲.doc)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

江苏版2018年高考数学一轮复习专题5.4平面向量应用讲.doc

1、专题5.4 平面向量应用【考纲解读】内 容要 求备注ABC平面向量平面向量的应用1向量与平面几何2向量与三角函数3向量与解析几何【知识清单】考点1 向量与平面几何向量在平面几何中的应用主要是用向量的线性运算及数量积解决平面几何中的平行、垂直、平移、全等、相似、长度、夹角等问题(1)证明线段平行或点共线问题,包括相似问题,常用共线向量定理:ab(b0)abx1y2x2y10.(2)证明垂直问题,常用数量积的运算性质abab0x1x2y1y20(a,b均为非零向量)(3)求夹角问题,利用夹角公式cos (为a与b的夹角)考点2 向量与三角函数与三角函数相结合考查向量的数量积的坐标运算及其应用是高考

2、热点题型解答此类问题,除了要熟练掌握向量数量积的坐标运算公式、向量模、向量夹角的坐标运算公式外,还应掌握三角恒等变换的相关知识考点3 向量与解析几何向量在解析几何中的应用,是以解析几何中的坐标为背景的一种向量描述它主要强调向量的坐标问题,进而利用直线和圆锥曲线的位置关系的相关知识来解答,坐标的运算是考查的主体.【考点深度剖析】向量的坐标运算可将几何问题用代数方法处理,也可以将代数问题转化为几何问题来解决,其中向量是桥梁,因此,在解此类题目的时候,一定要重视转化与化归【重点难点突破】考点1 向量与平面几何【1-1】已知ABC的三边长AC3,BC4,AB5,P为AB边上任意一点,则()的最大值为_

3、【答案】9.【1-2】(2014山东理)在ABC中,已知tanA,当A时,ABC的面积为_【答案】【解析】根据平面向量数量积的概念得|cosA,当A时,根据已知可得|,故ABC的面积为|sin. 【思想方法】平面几何问题的向量解法(1)坐标法把几何图形放在适当的坐标系中,就赋予了有关点与向量具体的坐标,这样就能进行相应的代数运算和向量运算,从而使问题得到解决(2)基向量法适当选取一组基底,沟通向量之间的联系,利用向量共线构造关于设定未知量的方程来进行求解考点2 向量与三角函数【2-1】已知在锐角ABC中,向量p(22sinA,cosAsinA),q(sinAcosA,1sinA),且p与q是共

4、线向量(1)求A的大小;(2)求函数y2sin2Bcos()取最大值时,B的大小【答案】(1)60(2)B60,ymax2 【2-2】(2015河南中原名校联考)在ABC中,A,B,C为三个内角,a,b,c为对应的三条边,C,且.(1)判断ABC的形状;(2)若|2,求的取值范围【答案】(1)等腰三角形(2)(,1)【思想方法】解决平面向量与三角函数的交汇问题的关键,准确利用向量的坐标运算化简已知条件,将其转化为三角函数的问题解决(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解(2)给出用三角函数表示的向量坐标,要求的是向量的模或

5、者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等考点3 向量与解析几何【3-1】已知平面上一定点C(2,0)和直线l:x8,P为该平面上一动点,作PQl,垂足为Q,且()()0.(1)求动点P的轨迹方程;(2)若EF为圆N:x2(y1)21的任一条直径,求的最小值【答案】 (1)1(2)124【解析】(1)设P(x,y),则Q(8,y)由()()0,【3-2】若点O和点F分别为椭圆1的中心和左焦点,点P为椭圆上的任意一点,则的最大值为_【答案】6【解析】由题意,得F(1,0),设P(x0,y0),则有1,解得y3(1)因为(x01,y0),(x0,y0),所以x0(x01)yxx03(1)x03,对应的抛物线的对称轴方程为x02.因为2x02,故当x02时,取得最大值236 【思想方法】向量的坐标运算可将几何问题用代数方法处理,也可以将代数问题转化为几何问题来解决,其中向量是桥梁,因此,在解此类题目的时候,一定要重视转化与化归【易错试题常警惕】1注意向量夹角和三角形内角的关系,两者并不等价2注意向量共线和两直线平行的关系3利用向量解决解析几何中的平行与垂直,可有效解决因斜率不存在使问题漏解的情况

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1