ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:314KB ,
资源ID:2794      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-2794-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文((新人教A)高三数学教案全集之8.2椭圆的简单几何性质(二).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

(新人教A)高三数学教案全集之8.2椭圆的简单几何性质(二).doc

1、课 题:82椭圆的简单几何性质(二)教学目的:1. 掌握椭圆范围、对称性、顶点、离心率、准线方程等几何性质;2理解椭圆第二定义与第一定义的等价性;3掌握根据曲线方程来研究曲线性质的基本思路与方法;培养学生观察能力,概括能力;提高学生画图能力;提高学生分析问题与解决问题的能力 教学重点:椭圆的第二定义、椭圆的准线方程教学难点:椭圆第二定义 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程:一、复习引入: 1椭圆定义:在平面内,到两定点距离之和等于定长(定长大于两定点间的距离)的动点的轨迹2标准方程:, ()3椭圆的性质:由椭圆方程() (1)范围: ,,椭圆落在组成的矩形

2、中(2)对称性:图象关于轴对称图象关于轴对称图象关于原点对称原点叫椭圆的对称中心,简称中心轴、轴叫椭圆的对称轴从椭圆的方程中直接可以看出它的范围,对称的截距(3)顶点:椭圆和对称轴的交点叫做椭圆的顶点椭圆和轴有两个交点,它们是椭圆的顶点 椭圆和轴有两个交,它们也是椭圆的顶点 因此椭圆共有四个顶点: ,加两焦点共有六个特殊点. 叫椭圆的长轴,叫椭圆的短轴长分别为分别为椭圆的长半轴长和短半轴长.椭圆的顶点即为椭圆与对称轴的交点(4)离心率: 椭圆焦距与长轴长之比 椭圆形状与的关系:,椭圆变圆,直至成为极限位置圆,此时也可认为圆为椭圆在时的特例椭圆变扁,直至成为极限位置线段,此时也可认为圆为椭圆在时

3、的特例 4. 回顾一下焦点在轴上的椭圆的标准方程的推导过程:如果对椭圆标准方程推导过程中的关键环节进行适当变形,我们会有新的发现: ,即 同时还有 (3)观察上述三式的结构,说出它们各自的几何意义,从而引出椭圆的第二定义二、讲解新课:1椭圆的第二定义:一动点到定点的距离和它到一条定直线的距离的比是一个内常数,那么这个点的轨迹叫做椭圆 其中定点叫做焦点,定直线叫做准线,常数就是离心率2椭圆的准线方程对于,相对于左焦点对应着左准线;相对于右焦点对应着右准线对于,相对于下焦点对应着下准线;相对于上焦点对应着上准线准线的位置关系:焦点到准线的距离(焦参数)其上任意点到准线的距离:(分情况讨论)点评:(

4、1)从上面的探索与分析可知,椭圆的第二定义与第一定义是等价的,它是椭圆两种不同的定义方式(2)椭圆的准线方程有两条,这两条准线在椭圆外部,与短轴平行,且关于短轴对称 三、讲解范例:例1求下列椭圆的准线方程:(1) (2) 解:方程可化为 ,是焦点在轴上且,的椭圆所以此椭圆的准线方程为 方程是焦点在轴上且,的椭圆所以此椭圆的准线方程为 例2 椭圆上有一点P,它到椭圆的左准线距离为10,求点P到椭圆的右焦点的距离 解:椭圆的离心率为,根据椭圆的第二定义得,点P到椭圆的左焦点距离为 再根据椭圆的第一定义得,点P到椭圆的右焦点的距离为20812 四、课堂练习:1求下列椭圆的焦点坐标与准线方程(1)(2

5、)答案:焦点坐标;准线方程焦点坐标;准线方程2已知椭圆的两条准线方程为,离心率为,求此椭圆的标准方程答案:五、小结 :本节课学习了椭圆的第二定义,椭圆两种定义是等价的;椭圆的两种类型的准线方程也是不同的,须区别开来上面(2)即同样(3)也可以这样处理,这是椭圆的焦半径公式 六、课后作业:七、板书设计(略)八、课后记:本课时背景材料是课本例4,学生解答例4并不困难,但对例4中直线的出现感到突然与困难,对由此得出的第二定义与第一定义有何内在联系搞不清楚 本设计通过反思椭圆标准方程的推导过程,引导学生自己去发现椭圆的第二定义 使学生明白两种定义是等价的,消除了学生困惑 利用引导学生去发现定义的教学,调动学生的积极性,加强了知识发生过程的教学 使用多媒体辅助教学,增加了课堂教学容量,提高了课堂教学效益

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3