收藏 分享(赏)

专题1.2 代数式苏科版初中数学单元考点题型举一反三讲练(教师版) 购买认准店铺名:学霸冲冲冲.docx

上传人:高**** 文档编号:27922 上传时间:2024-05-23 格式:DOCX 页数:45 大小:560.53KB
下载 相关 举报
专题1.2 代数式苏科版初中数学单元考点题型举一反三讲练(教师版) 购买认准店铺名:学霸冲冲冲.docx_第1页
第1页 / 共45页
专题1.2 代数式苏科版初中数学单元考点题型举一反三讲练(教师版) 购买认准店铺名:学霸冲冲冲.docx_第2页
第2页 / 共45页
专题1.2 代数式苏科版初中数学单元考点题型举一反三讲练(教师版) 购买认准店铺名:学霸冲冲冲.docx_第3页
第3页 / 共45页
专题1.2 代数式苏科版初中数学单元考点题型举一反三讲练(教师版) 购买认准店铺名:学霸冲冲冲.docx_第4页
第4页 / 共45页
专题1.2 代数式苏科版初中数学单元考点题型举一反三讲练(教师版) 购买认准店铺名:学霸冲冲冲.docx_第5页
第5页 / 共45页
专题1.2 代数式苏科版初中数学单元考点题型举一反三讲练(教师版) 购买认准店铺名:学霸冲冲冲.docx_第6页
第6页 / 共45页
专题1.2 代数式苏科版初中数学单元考点题型举一反三讲练(教师版) 购买认准店铺名:学霸冲冲冲.docx_第7页
第7页 / 共45页
专题1.2 代数式苏科版初中数学单元考点题型举一反三讲练(教师版) 购买认准店铺名:学霸冲冲冲.docx_第8页
第8页 / 共45页
专题1.2 代数式苏科版初中数学单元考点题型举一反三讲练(教师版) 购买认准店铺名:学霸冲冲冲.docx_第9页
第9页 / 共45页
专题1.2 代数式苏科版初中数学单元考点题型举一反三讲练(教师版) 购买认准店铺名:学霸冲冲冲.docx_第10页
第10页 / 共45页
专题1.2 代数式苏科版初中数学单元考点题型举一反三讲练(教师版) 购买认准店铺名:学霸冲冲冲.docx_第11页
第11页 / 共45页
专题1.2 代数式苏科版初中数学单元考点题型举一反三讲练(教师版) 购买认准店铺名:学霸冲冲冲.docx_第12页
第12页 / 共45页
专题1.2 代数式苏科版初中数学单元考点题型举一反三讲练(教师版) 购买认准店铺名:学霸冲冲冲.docx_第13页
第13页 / 共45页
专题1.2 代数式苏科版初中数学单元考点题型举一反三讲练(教师版) 购买认准店铺名:学霸冲冲冲.docx_第14页
第14页 / 共45页
专题1.2 代数式苏科版初中数学单元考点题型举一反三讲练(教师版) 购买认准店铺名:学霸冲冲冲.docx_第15页
第15页 / 共45页
专题1.2 代数式苏科版初中数学单元考点题型举一反三讲练(教师版) 购买认准店铺名:学霸冲冲冲.docx_第16页
第16页 / 共45页
专题1.2 代数式苏科版初中数学单元考点题型举一反三讲练(教师版) 购买认准店铺名:学霸冲冲冲.docx_第17页
第17页 / 共45页
专题1.2 代数式苏科版初中数学单元考点题型举一反三讲练(教师版) 购买认准店铺名:学霸冲冲冲.docx_第18页
第18页 / 共45页
专题1.2 代数式苏科版初中数学单元考点题型举一反三讲练(教师版) 购买认准店铺名:学霸冲冲冲.docx_第19页
第19页 / 共45页
专题1.2 代数式苏科版初中数学单元考点题型举一反三讲练(教师版) 购买认准店铺名:学霸冲冲冲.docx_第20页
第20页 / 共45页
专题1.2 代数式苏科版初中数学单元考点题型举一反三讲练(教师版) 购买认准店铺名:学霸冲冲冲.docx_第21页
第21页 / 共45页
专题1.2 代数式苏科版初中数学单元考点题型举一反三讲练(教师版) 购买认准店铺名:学霸冲冲冲.docx_第22页
第22页 / 共45页
专题1.2 代数式苏科版初中数学单元考点题型举一反三讲练(教师版) 购买认准店铺名:学霸冲冲冲.docx_第23页
第23页 / 共45页
专题1.2 代数式苏科版初中数学单元考点题型举一反三讲练(教师版) 购买认准店铺名:学霸冲冲冲.docx_第24页
第24页 / 共45页
专题1.2 代数式苏科版初中数学单元考点题型举一反三讲练(教师版) 购买认准店铺名:学霸冲冲冲.docx_第25页
第25页 / 共45页
专题1.2 代数式苏科版初中数学单元考点题型举一反三讲练(教师版) 购买认准店铺名:学霸冲冲冲.docx_第26页
第26页 / 共45页
专题1.2 代数式苏科版初中数学单元考点题型举一反三讲练(教师版) 购买认准店铺名:学霸冲冲冲.docx_第27页
第27页 / 共45页
专题1.2 代数式苏科版初中数学单元考点题型举一反三讲练(教师版) 购买认准店铺名:学霸冲冲冲.docx_第28页
第28页 / 共45页
专题1.2 代数式苏科版初中数学单元考点题型举一反三讲练(教师版) 购买认准店铺名:学霸冲冲冲.docx_第29页
第29页 / 共45页
专题1.2 代数式苏科版初中数学单元考点题型举一反三讲练(教师版) 购买认准店铺名:学霸冲冲冲.docx_第30页
第30页 / 共45页
专题1.2 代数式苏科版初中数学单元考点题型举一反三讲练(教师版) 购买认准店铺名:学霸冲冲冲.docx_第31页
第31页 / 共45页
专题1.2 代数式苏科版初中数学单元考点题型举一反三讲练(教师版) 购买认准店铺名:学霸冲冲冲.docx_第32页
第32页 / 共45页
专题1.2 代数式苏科版初中数学单元考点题型举一反三讲练(教师版) 购买认准店铺名:学霸冲冲冲.docx_第33页
第33页 / 共45页
专题1.2 代数式苏科版初中数学单元考点题型举一反三讲练(教师版) 购买认准店铺名:学霸冲冲冲.docx_第34页
第34页 / 共45页
专题1.2 代数式苏科版初中数学单元考点题型举一反三讲练(教师版) 购买认准店铺名:学霸冲冲冲.docx_第35页
第35页 / 共45页
专题1.2 代数式苏科版初中数学单元考点题型举一反三讲练(教师版) 购买认准店铺名:学霸冲冲冲.docx_第36页
第36页 / 共45页
专题1.2 代数式苏科版初中数学单元考点题型举一反三讲练(教师版) 购买认准店铺名:学霸冲冲冲.docx_第37页
第37页 / 共45页
专题1.2 代数式苏科版初中数学单元考点题型举一反三讲练(教师版) 购买认准店铺名:学霸冲冲冲.docx_第38页
第38页 / 共45页
专题1.2 代数式苏科版初中数学单元考点题型举一反三讲练(教师版) 购买认准店铺名:学霸冲冲冲.docx_第39页
第39页 / 共45页
专题1.2 代数式苏科版初中数学单元考点题型举一反三讲练(教师版) 购买认准店铺名:学霸冲冲冲.docx_第40页
第40页 / 共45页
专题1.2 代数式苏科版初中数学单元考点题型举一反三讲练(教师版) 购买认准店铺名:学霸冲冲冲.docx_第41页
第41页 / 共45页
专题1.2 代数式苏科版初中数学单元考点题型举一反三讲练(教师版) 购买认准店铺名:学霸冲冲冲.docx_第42页
第42页 / 共45页
专题1.2 代数式苏科版初中数学单元考点题型举一反三讲练(教师版) 购买认准店铺名:学霸冲冲冲.docx_第43页
第43页 / 共45页
专题1.2 代数式苏科版初中数学单元考点题型举一反三讲练(教师版) 购买认准店铺名:学霸冲冲冲.docx_第44页
第44页 / 共45页
专题1.2 代数式苏科版初中数学单元考点题型举一反三讲练(教师版) 购买认准店铺名:学霸冲冲冲.docx_第45页
第45页 / 共45页
亲,该文档总共45页,全部预览完了,如果喜欢就下载吧!
资源描述

1、专题1.2 代数式单元考点题型举一反三讲练【苏科版】 【考点1 代数式的定义及书写】【方法点拨】(1)代数式的概念:用运算符号把数字与字母连接而成的式子叫做代数式,单独的一个数或一个字母也是代数式(2) 代数式书写规范:数和字母相乘,可省略乘号,并把数字写在字母的前面;字母和字母相乘,乘号可以省略不写或用“ ” 表示. 一般情况下,按26个字母的顺序从左到右来写;后面带单位的相加或相减的式子要用括号括起来;除法运算写成分数形式,即除号改为分数线;带分数与字母相乘时,带分数要写成假分数的形式;当“1”与任何字母相乘时,“1”省略不写;当“-1”乘以字母时,只要在那个字母前加上“-”号.【例1】(

2、1)(2019秋皇姑区校级期中)在下列各式中(1)3a,(2)4+812,(3)2a5b0,(4)0,(5)sr2,(6)a2b2,(7)1+2,(8)x+2y,其中代数式的个数是()A3个B4个C5个D6个(2)(2019秋茂名期中)下列各式:114x;23;20%x;abc;m-n3;x5千克:其中符合代数式书写要求的有()A5个B4个C3个D2个【分析】(1)根据代数式的概念:用运算符号把数字与字母连接而成的式子叫做代数式,单独的一个数或一个字母也是代数式依此作答即可(2)根据书写规则,分数不能为带分数,对各项的代数式进行判定,即可求出答案【解答】(1)解:由题可得,属于代数式的有:(1

3、)3a,(4)0,(6)a2b2,(7)1+2,(8)x+2y,共5个,故选:C(2)解:114x中分数不能为带分数;23数与数相乘不能用“”;20%x,书写正确;abc,除号应用分数线,所以书写错误;m-n3书写正确;x5应该加括号,所以书写错误;符合代数式书写要求的有共2个故选:D【点评】(1)代数式是由运算符号把数或表示数的字母连接而成的式子单独的一个数或者一个字母也是代数式带有“()”“()”“”“”等符号的不是代数式(2)注意代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)带分数要写成假分数的形式【变式1-

4、1】(2019秋杨浦区校级月考)在以下各式中属于代数式的是()S=12aha+bb+aa1a0 a+ba+babABCD【分析】根据代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子单独的一个数或者一个字母也是代数式带有“()”“()”“”“”等符号的不是代数式进行分析即可【解答】解:a,1a,0,a+b,a+bab是代数式,故选:C【点评】此题主要考查了代数式,关键是掌握代数式的定义【变式1-2】(2019秋桥西区校级月考)在式子0.5xy2,3a,12(a+b),a5,314abc中,符合代数式书写要求的有()A1个B2个C3个D4个【分析】直接利用代数式的定

5、义,代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子单独的一个数或者一个字母也是代数式带有“()”“()”“”“”等符号的不是代数式,进而判断即可【解答】解:0.5xy2,3a,12(a+b),a5,314abc中,符合代数式书写要求的有0.5xy2,12(a+b)共2个故选:B【点评】此题主要考查了代数式,正确把握定义是解题关键【变式1-3】(2019秋南昌期末)进入初中后学习数对于代数式书写规范,教材中指出:“在含有字母的式子中如果出现乘号“”,通常将乘号写作“”或者省略不写”其实还有一些书写规范,比如,在代数式中如果出现除号“”,通常用分数线“”来取代;数

6、字与字母相乘时,一般数字写在前面,根据以上书写要求,将代数式(ac4b2)4简写为 【分析】根据代数式的写法表示即可【解答】解:代数式(ac4b2)4简写为:4ac-b24,故答案为:4ac-b24【点评】此题主要考查了代数式,关键是掌握代数式的表示要求【考点2 列代数式(和差倍问题)】【方法点拨】解决此类问题是要理解题意,将字母看作数字表示相应的量,列出代数式,注意代数式的书写规范.【例2】(2019秋宿豫区期中)学校举行国庆画展,七(1)班交m件作品,七(2)班交的作品比七(1)班的2倍少6件,则七(2)班交的作品是 件【分析】根据“2倍”即乘以2,“少6件”即再减去6即可得【解答】解:根

7、据题意知七(2)班交的作品数量为(2m6)件,故答案为:2m6【点评】本题主要考查列代数式,列代数式应该注意格式.【变式2-1】(2019秋临沭县期中)某校报数学兴趣小组的有m人,报书法兴趣小组的人数比数学兴趣小组的人数的一半多3人,那么报书法兴趣小组的有 人【分析】数学兴趣小组的人数的一半是:12m,则根据“报书法兴趣小组的人比数学兴趣小组的人数的一半多3人”列出代数式【解答】解:依题意知,美术兴趣小组的人数是:12m+3故答案是:(12m+3)【点评】本题考查了列代数式解决问题的关键是读懂题意,找到所求的量的等量关系【变式2-3】(2019秋孝义市期中)某学校七年级有m人,八年级人数比七年

8、级人数的23多10人,九年级人数比八年级人数的2倍少50人,用含m的式子表示七八九三个年级的总人数为()A3mB113m40C3m40D3m20【分析】根据题意分别表示出各年级的人数,进而利用整式的加减运算法则得出答案【解答】解:由题意可得,八年级的人数为:23m+10,九年级人数为:2(23m+10)50,故七八九三个年级的总人数为:m+23m+10+2(23m+10)503m20故选:D【点评】此题主要考查了列代数式,正确表示出各年级人数是解题关键【变式2-3】(2019秋九江期中)我校甲、乙、丙三位同学给希望工程捐款,已知甲同学捐款x元,乙同学的捐款金额比甲同学捐款金额的3倍少8元,丙同

9、学的捐款金额是甲、乙两同学捐款总金额的34,用含x的代数式表示甲,乙、丙三位同学的捐款总金额【分析】分别表示出乙、丙同学捐款总数进而得出答案【解答】解:由题意可得,乙同学捐款(3x8)元,丙同学的捐款金额是:34(x+3x8)3x6(元),故甲,乙、丙三位同学的捐款总金额为:x+3x8+3x67x14(元)【点评】此题主要考查了列代数式,正确表示出乙、丙同学捐款总数是解题关键【考点3 列代数式(数字问题)】【方法点拨】解决此类问题是要理解题意,将字母看作数字表示相应的量,列出代数式,注意代数式的书写规范.【例3】(2020春香坊区校级期中)一个两位数,十位上的数字为a,个位上的数字比十位上的数

10、字少2,则这个两位数为()A11a20B11a+20C11a2D11a+2【分析】根据一个两位数,十位上的数字为a,个位上的数字比十位上的数字少2,可知个位数字为a2,然后即可用含a的代数式表示出这个两位数【解答】解:由题意可得,这个两位数为:10a+(a2)11a2,故选:C【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式【变式3-1】(2019春新泰市期中)设a是一个三位数,b是一个两位数,如果将这两个数顺次排成一个五位数(a在左,b在右),则这个五位数可以表示为 【分析】相当于把三位数扩大了100倍,两位数的大小不变,相加即可【解答】解:三位数扩大了100倍,两位数的

11、大小不变,这个五位数可以表示为100a+b故答案是100a+b【点评】考查列代数式,得到新数中的a,b与原数中的a,b的关系是解决本题的关键【变式3-2】(2019秋温岭市期中)一个三位数为x,一个两位数为y,把这个三位数放在两位数的左边得到一个五位数M,把这个两位数放在三位数的左边又可以得到一个五位数N,则MN (结果用含x,y的式子表示)【分析】由于一个两位数为y,一个三位数为x,若把这个三位数放在两位数的左边得到一个五位数M,由此得到M100x+y,又把这个两位数放在三位数的左边又可以得到一个五位数N,由此得到N1000y+x,然后就可以求出MN的值【解答】解:依题意得,M100x+y,

12、N1000y+x,MN(100x+y)(1000y+x)99x999y故答案为:99x999y【点评】此题主要考查了列代数式,解决此类题目的关键是首先正确理解题意,然后根据题意列出代数式,同时计算时熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点【变式3-3】(2019秋临高县期中)用式子表示十位上的数是x,个位上的数是y的两位数,再把这个两位数的十位上的数与个位上的数交换位置求后来所得的数与原来的数的差是多少?【分析】由十位上的数字乘10加上个位上的数字表示出两位数,再由个位与十位交换表示出新数,新数减去原来的数即可得到结果【解答】解:依题意有(10y+x)(10x+y)10y

13、+x10xy9y9x故后来所得的数与原来的数的差是9y9x【点评】本题主要考查列代数式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的数量关系【考点4 列代数式(销售问题)】【方法点拨】解决此类问题是要理解题意,将字母看作数字表示相应的量,列出代数式,注意代数式的书写规范.【例4】(2019秋洪山区期中)一件羽毛球拍先按成本价提高50%标价,再将标价打8折出售,若这件羽毛球拍的成本价是x元,那么售价可表示为 【分析】直接利用成本与原价以及售价与打折的关系进而得出答案【解答】解:由题意可得:(1+50%)x0.81.2x(元)故答案为:1.2x元【点评】此题主要考查了列代数式,正确理

14、解打折与售价的关系是解题关键【变式4-1】(2019春南岗区校级期中)某商店有一种商品每件成本a元,按成本价增加20%定为售价,售出80件后,由于存积压降价,打八五折出售,又售出120件(1)求该商品减价后每件的售价为多少元?(2)售完200件这种商品共盈利多少元?【分析】(1)根据一种商品每件成本a元,按成本价增加20%定为售价,后来由于存积压降价,打八五折出售,可以用含a的代数式表示出该商品减价后每件的售价为多少元;(2)根据题意和(1)中的结果,可以计算出售完200件这种商品共盈利多少元【解答】解:(1)由题意可得,每件商品减价后的售价是:a(1+20%)0.851.02a(元),即该商

15、品减价后每件的售价为1.02a元;(2)20%a80+(1.02aa)(20080)16a+0.02a12016a+2.4a18.4a(元),答:售完200件这种商品共盈利18.4a元【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式【变式4-2】(2019秋行唐县期中)小明经销一种服装,进货价为每件a元,经测算先将进货价提高200%进行标价,元旦前夕又按标价的4折销售,这件服装的实际价格()A比进货价便宜了0.52a元B比进货价高了0.2a元C比进货价高了0.8a元D与进货价相同【分析】直接利用标价以及打折之间的关系得出关系式即可【解答】解:由题意可得,这件服装的实际价格是

16、:(1+200%)a40%1.2a元则1.2aa0.2a(元)比进货价高了0.2a元故选:B【点评】此题主要考查了列代数式,正确表示出标价是解题关键【变式4-3】(2019秋海曙区期中)张师傅下岗后做起了小生意,第一次进货时,他以每件a元的价格购进了20件甲种小商品,以每件b元的价格购进了30件乙种小商品(ab)根据市场行情,他将这两种小商品都以a+b2元的价格出售在这次买卖中,张师傅的盈亏状况为()A赚了(25a+25b)元B亏了(20a+30b)元C赚了(5a5b)元D亏了(5a5b)元【分析】应该比较他的总进价和总售价分别表示出总进价为:20a+30b,总售价为a+b2(20+30)25

17、a+25b,通过作差法比较总进价和总售价的大小,判断他是赔是赚【解答】解:根据题意可知:总进价为20a+30b,总售价为a+b2(20+30)25a+25b25a+25b(20a+30b)5a5b,ab,5a5b0,那么售价进价,他赚了故选:C【点评】此题考查列代数式,列代数式的关键是正确理解文字语言中的关键词,找到其中的数量关系本题要注意应该比较他的总进价和总售价【考点5 列代数式(增长率问题)】【方法点拨】解决此类问题是要理解题意,将字母看作数字表示相应的量,列出代数式,注意代数式的书写规范.【例5】(2019秋牡丹江期中)某校去年初一招收新生a人,今年比去年增加x%,今年该校初一学生人数

18、用式子表示为()A(a+x%)人Bax%人Ca(1+x)100人Da(1+x%)人【分析】根据今年招收的新生人数去年初一招收的新生人数+x%去年初一招收新生人数,即可得出答案【解答】解:去年初一招收新生a人,今年该校初一学生人数为:a(1+x%)人故选:D【点评】此题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系注意今年比去年增加x%和今年是去年的x%的区别【变式5-1】(2019秋海淀区校级期中)某校初一年级计划初中三年每年参加植树活动,2019年已经植树a亩,如果以后每年比上一年植树面积增长20%,那么2021应植树的面积为()Aa(1+20%)Ba(1+220%)Ca(

19、1+20%)2D2a(1+20%)【分析】根据题意,可以用含a的代数式表示出2021年应植树的面积,本题得以解决【解答】解:由题意可得,2021应植树的面积为:a(1+20%)2,故选:C【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式【变式5-2】(2019秋开福区校级期中)某企业今年1月份产值为x万元,2月份的产值比1月份减少了10%,则1月份和2月份的产值和是()Ax+(110%)x万元Bx+(1+10%)x万元C(110%)x万元D(1+10%)x万元【分析】根据题意表示出2月份的产值,进而得出答案【解答】解:今年1月份产值为x万元,2月份的产值比1月份减少了10%

20、,2月份的产量为:(110%)x,故1月份和2月份的产值和是:x+(110%)x万元故选:A【点评】此题主要考查了列代数式,正确表示出2月份的产值是解题关键【变式5-3】(2019秋揭阳期末)裕丰商店一月份的利润为50万元,二、三月份的利润平均增长率为m,则下列各式中,能正确表示这个商店第一季度的总利润的是()A50(1+m)万元B50(1+m)2万元C50+50(1+m)万元D50+50(1+m)+50(1+m)2万元【分析】根据裕丰商店一月份的利润及二、三月份的利润平均增长率,即可用含m的代数式表示出二、三月份的利润,再将三个月的利润相加即可得出结论【解答】解:裕丰商店一月份的利润为50万

21、元,二、三月份的利润平均增长率为m,二月份的利润为50(1+m)万元,三月份的利润为50(1+m)2,这个商店第一季度的总利润是50+50(1+m)+50(1+m)2万元故选:D【点评】本题考查了列代数式,根据前三个月利润间的关系,用含m的代数式表示出二、三月份的利润是解题的关键【考点6 列代数式(分段计费问题)】【方法点拨】解决此类问题是要理解题意,将字母看作数字表示相应的量,列出代数式,注意代数式的书写规范.【例6】(2019秋东西湖区期中)东西湖区域出租汽车行驶2千米以内(包括2千米)的车费是10元,以后每行驶1千米,再加0.7元如果某人坐出租汽车行驶了m千米(m是整数,且m2),则车费

22、是()A(100.7m)元B(11.4+0.7m)元C(8.6+0.7m)元D(10+0.7m)元【分析】根据题意,可以用含m的代数式表示出需要付的车费,本题得以解决【解答】解:由题意可得,车费是:10+(m2)0.7(0.7m+8.6)元,故选:C【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式【变式6-1】(2019秋玄武区期中)为响应国家节能减排的号召,鼓励人们节约用电,保护能源,某市实施用电“阶梯价格”收费制度收费标准如表:居民每月用电量单价(元/度)不超过50度的部分0.5超过50度但不超过200度的部分0.6超过200度的部分0.8已知小刚家上半年的用电情况如下

23、表(以200度为标准,超出200度记为正、低于200度记为负):一月份二月份三月份四月份五月份六月份50+302645+36+25根据上述数据,解答下列问题:(1)小刚家用电量最多的是 月份,实际用电量为 度;(2)小刚家一月份应交纳电费 元;(3)若小刚家七月份用电量为x度,求小刚家七月份应交纳的电费(用含x的代数式表示)【分析】(1)根据表格中的数据可以解答本题;(2)根据表格中的数据和题意,可以计算出小刚家一月份应交纳电费;(3)根据表格中的数据,可以用分类讨论的方法用相应的代数式表示出小刚家七月份应交纳的电费【解答】解:(1)由表格可知,五月份用电量最多,实际用电量为:200+3623

24、6(度),故答案为:五,236;(2)小刚家一月份用电:200+(50)150(度),小刚家一月份应交纳电费:0.550+(15050)0.625+6085(元),故答案为:85;(3)当0x50时,电费为0.5x元;当50x200时,电费为0.550+(x50)0.625+0.6x30(0.6x5)元;当x200时,电费为0.550+0.6150+(x200)0.825+90+0.8x160(0.8x45)元【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式【变式6-2】(2019秋金乡县期中)为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该

25、市自来水收费的价目表如下(注:水费按月份结算,表示立方米)价目表每月用水量单价不超过6m3的部分2元/m3超出6m3不超出10m3的部分4元/m3超出10m3的部分8元/m3请根据上表的内容解答下列问题:(1)填空:若该户居民2月份用水5m3,则应交水费 元;3月份用水8m3,则应收水费 元;(2)若该户居民4月份用水am3(其中a10m3),则应交水费多少元(用含a的代数式表示,并化简)?(3)若该户居民5、6两个月共用水14m3(6月份用水量超过了5月份),设5月份用水xm3,直接写出该户居民5、6两个月共交水费多少元(用含x的代数式表示)【分析】(1)根据题意,可以计算出该居民二月份和三

26、月份的水费;(2)根据题意,可以用a的代数式表示出4月份的水费;(3)根据题意,利用分类讨论的方法可以解答本题【解答】解:(1)由表格可得,若该户居民2月份用水5m3,则应交水费:2510(元),3月份用水8m3,则应收水费:26+4(86)12+4212+820(元),故答案为:10,20;(2)由表格可得,该户居民4月份用水am3(其中a10m3),则应交水费:26+4(106)+8(a10)(8a52)元,答:应交水费(8a52)元;(3)由题意可得,x14x,得x7,当6x7,该户居民5、6两个月共交水费:26+(x6)4+26+(14x6)432(元),当4x6时,该户居民5、6两个

27、月共交水费:2x+26+(14x)4(2x+68)(元),当0x4时,该户居民5、6两个月共交水费:2x+26+(106)4+(14x)8(1406x)(元)【点评】本题考查列代数式、有理数的混合运算,解答本题的关键是明确题意,列出相应的代数式、利用分类讨论的的方法解答【变式6-3】(2019秋洪山区期中)滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价1.8元/公里0.45元/分钟0.4元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算:时长费按行车的实际时间计算远途费的收取方式为:行车里程10公里以内(含10公里)不收远途费,超过

28、10公里的,超出部分每公里收0.4元(1)若小东乘坐滴滴快车,行车里程为20公里,行车时间为30分钟,则需付车费 元;(2)若小明乘坐滴滴快车,行车里程为a公里,行车时间为b分钟,则小明应付车费多少元;(用含a、b的代数式表示,并化简)(3)小王与小张各自乘坐滴滴快车,行车里程分别为9.5公里与14.5公里,受路况情况影响,小王反而比小张乘车多用24分钟,请问谁所付车费多?【分析】(1)根据滴滴快车计算得到得到所求即可;(2)根据a的值在10公里以内还是超过10公里,分别写出小明应付费即可;(3)根据题意计算出相差的车费即可【解答】解:(1)1.820+0.4530+0.4(2010)53.5

29、(元),故答案为:53.5;(2)当a10时,小明应付费(1.8a+0.45b)元;当a10时,小明应付费1.8a+0.45b+0.4(a10)(2.2a+0.45b4)元;(3)小王与小张乘坐滴滴快车分别为a分钟、(a24)分钟,1.89.5+0.45a1.814.5+0.45(a24)+0.4(14.510)0因此,小王和小张付费相同【点评】此题考查了代数式求值,以及列代数式,弄清题意是解本题的关键【考点7 代数式求值(整体代入法)】【例7】(2019秋福田区期中)已知代数式x2y的值是3,则代数式4y+12x的值是()A5B3C1D0【分析】直接将原式变形进而把已知代入求出答案【解答】解

30、:x2y3,4y+12x2(x+2y)+16+15故选:A【点评】此题主要考查了代数式求值,正确将原式变形是解题关键【变式7-1】(2019秋郾城区期中)当x2时,代数式px3+qx+1的值为2019,求当x2时,代数式的px3+qx+1值是()A2018B2019C2020D2021【分析】根据整体思想将已知条件用含p和q的代数式表示,再整体代入即可求解【解答】解:当x2时,代数式px3+qx+1的值为2019,即8p+2q2020当x2时,代数式的px3+qx+18p2q+1(8p+2q)+12020+12021故选:D【点评】本题考查了代数式求值,解决本题的关键是利用整体思想【变式7-2

31、】(2019春海阳市期中)已知1a2+2a0,则14a2-12a+54的值为()A32B14C1D5【分析】1a2+2a0经过整理得:a22a1,14a2-12a+54=14(a22a)+54,把a22a1代入代数式14(a22a)+54,计算求值即可【解答】解:1a2+2a0,a22a1,14a2-12a+54=14(a22a)+54=141+54=32,故选:A【点评】本题考查了代数式求值,正确掌握代数式变形,代入法,有理数混合运算法则是解题的关键【变式7-3】(2019秋甘井子区期末)(1)【探究】若a2+2a1,则代数式2a2+4a+42( )+42( )+4 【类比】若x23x2,则

32、x23x5的值为 (2)【应用】当x1时,代数式px3+qx+1的值是5,求当x1时,px3+qx+1的值;(3)【推广】当x2020时,代数式ax5+bx3+cx5的值为m,当x2020时,ax5+bx3+cx5的值为 (含m的式子表示)【分析】(1)把代数式2a2+4a+42(a2+2a)+4,然后利用整体代入的方法计算;利用同样方法计算x23x5的值;(2)先用已知条件得到p+q4,而当x1时,px3+qx+1pq+1(p+q)+1,然后利用整体代入的方法计算;(3)利用当x2020时,代数式ax5+bx3+cx5的值为m得到20205a+20203b+2020cm+5,而当x2020时

33、,ax5+bx3+cx520205a20203b2020c5,然后利用整体代入的方法计算【解答】解:(1)a2+2a1,2a2+4a+42(a2+2a)+42(1)+46;【类比】若x23x2,则x23x5253;故答案为a2+2a,1,6;3;、(2)当x1时,代数式px3+qx+1的值是5,p+q+15,p+q4,当x1时,px3+qx+1pq+1(p+q)+14+13;(3)当x2020时,代数式ax5+bx3+cx5的值为m,20205a+20203b+2020c5m,即20205a+20203b+2020cm+5,当x2020时,ax5+bx3+cx5(2020)5a+(2020)3

34、b+(2020)c520205a20203b2020c5(20205a+20203b+2020c)5(m+5)5m55m10故答案为m10【点评】本题考查了代数式求值:求代数式的值可以直接代入、计算如果给出的代数式可以化简,要先化简再求值也考查了整体代入的方法【考点8 代数式求值(程序框图)】【例8】(2019秋九龙坡区校级期中)根据以下程序,当输入x2时,输出结果为()A5B16C5D16【分析】首先求出当x2时,9x2的值是多少,然后把所得的结果和1比较大小,判断是否输出结果即可【解答】解:当x2时,9x29(2)29451,当x5时,9x2952925161,当输入x2时,输出结果为16

35、故选:B【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算如果给出的代数式可以化简,要先化简再求值题型简单总结以下三种:已知条件不化简,所给代数式化简;已知条件化简,所给代数式不化简;已知条件和所给代数式都要化简【变式8-1】(2019秋巴南区期中)根据如图所示的计算程序,若输入x1,则输出结果为()A4B2C1D1【分析】把x1代入程序中计算即可得到结论【解答】解:当入x1时,x2+31+321,当x2时,x2+34+311,故选:D【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键【变式8-2】(2019春沙坪坝区校级期中)按如图所示的运算程序

36、,能使运算输出的结果为6的是()Ax5,y1Bx2,y2Cx2,y1Dx2,y3【分析】把x与y的值代入检验即可【解答】解:A、当x5,y1时,输出结果为5+16,符合题意;B、当x2,y2时,输出结果为242,不符合题意;C、当x2,y1时,输出结果为2+13,不符合题意;D、当x2,y3时,输出结果为2911,不符合题意,故选:A【点评】此题考查了代数式求值,以及有理数的混合运算,熟练掌握运算法则是解本题的关键【变式8-3】(2019秋南岸区期中)如图是一个运算程序,能使输出结果为1的是()A1,2B1,0C1,2D0,1【分析】根据筛选法将各个选项分别代入运算程序即可得结果【解答】解:A

37、当a1,b2时,输出结果为3,不符合题意;B当a1,b0时,输出结果为1,不符合题意;C当a1,b2时,输出结果为1,符合题意;根据筛选法C选项正确故选:C【点评】本题考查 了代数式求值、有理数的混合运算,解决本题的关键是理解运算程序【考点9 单项式的系数与次数】【方法点拨】解题关键:单项式中的数字因数称为这个单项式的系数;一个单项式中,所有字母的指数的和叫做这个单项式的次数【例9】(2019秋海淀区校级期中)4x2y4z9的系数是,次数是 【分析】直接利用单项式的系数与次数确定方法得出答案【解答】解:4x2y4z9的系数是:49,次数是:7故答案为:49,7【点评】此题主要考查了单项式,正确

38、把握单项式的次数与系数确定方法是解题关键【变式9-1】(2019秋淅川县期中)单项式3xa+1y2与-102x2y39的次数相同,则a的值为 【分析】根据单项式的次数相等,得到关于a的一元一次方程,求解即可【解答】解:因为-102x2y39的次数是5,又因为单项式3xa+1+y2与-102x2y39的次数相同所以a+1+25解得a2故答案为:2【点评】本题考查了单项式次数的定义及一元一次方程的解法通过单项式的次数相等列出关于a的方程是解决本题的关键注意单项式的次数不包含数字和的次数【变式9-2】(2019秋永吉县期末)若单项式x3yn+5的系数是m,次数是9,则m+n的值为 【分析】先依据单项

39、式的系数和次数的定义确定出m、n的值,然后求解即可【解答】解:根据题意得:m1,3+n+59,解得:m1,n1,则m+n1+10故答案为:0【点评】本题主要考查的是单项式的定义,掌握单项式的系数和次数的概念是概念是解题的关键【变式9-3】(2019秋鄂城区期中)已知(m3)x3y|m|+1是关于x,y的七次单项式,求m22m+2 【分析】直接利用单项式的次数确定方法分析得出答案【解答】解:(m3)x3y|m|+1是关于x,y的七次单项式,3+|m|+17且m30,解得:m3,m22m+29+6+217故答案为:17【点评】此题主要考查了单项式,正确把握单项式的次数确定方法是解题关键【考点10

40、多项式的项与次数】【方法点拨】解题关键是熟悉几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项多项式中次数最高的项的次数叫做多项式的次数【例10】(2019秋北碚区校级期中)关于多项式5x4y3x2y+4xy2,下列说法正确的是()A三次项系数为3B常数项是2C多项式的项是5x4y,3x2y,4xy,2D这个多项式是四次四项式【分析】根据多项式的项、次数的定义逐个判断即可【解答】解:A、多项式5x4y3x2y+4xy2的三次项的系数为3,错误,故本选项不符合题意;B、多项式5x4y3x2y+4xy2的常数项是2,正确,故本选项符合题意;C、多项式5x4y3x2y+4

41、xy2的项为5x4y,3x2y,4xy,2,错误,故本选项不符合题意;D、多项式5x4y3x2y+4xy2是5次四项式,错误,故本选项不符合题意;故选:B【点评】本题考查了多项式的有关概念,能熟记多项式的次数和项的定义是解此题的关键【变式10-1】(2019秋禹州市期中)多项式 是一个关于x的三次四项式,它的次数最高项的系数是5,二次项的系数是34,一次项的系数是2,常数项是4【分析】直接利用多项式的次数与项数确定方法分析得出答案【解答】解:由题意可得,此多项式可以为:5x3+34x22x+4故答案为:5x3+34x22x+4【点评】此题主要考查了多项式,正确把握相关定义是解题关键【变式10-

42、2】(2019秋高安市期中)已知关于x的整式(|k|3)x3+(k3)x2k(1)若此整式是单项式,求k的值;(2)若此整式是二次多项式,求k的值;(3)若此整式是二项式,求k的值【分析】(1)由整式为单项式,根据定义得到|k|30且k30,求出k的值;(2)由整式为二次式,根据定义得到|k|30且k30,求出k的值;(3)由整式为二项式,得到|k|30且k30;k0;依此即可求解【解答】解:(1)关于x的整式是单项式,|k|30且k30,解得k3,k的值是3;(2)关于x的整式是二次多项式,|k|30且k30,解得k3,k的值是3;(3)关于x的整式是二项式,|k|30且k30,解得k3;k

43、0k的值是3或0【点评】此题考查了单项式和多项式,解题的关键是熟悉几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项多项式中次数最高的项的次数叫做多项式的次数【变式10-3】(2019秋吉林期中)已知关于x、y的多项式-35x2ym+1+12x2y2-3y2+8是八次四项式,单项式5xny6m的次数与该多项式的次数相同,求m、n的值【分析】先根据多项式的次数计算出m的值,再根据单项式的次数计算出n的值即可【解答】解:多项式-35x2ym+1+12x2y2-3y2+8是八次四项式,所以2+m+18,解得m5又因为5xny6m的次数与该多项式的次数相同,所以n+6m8即

44、n7【点评】本题考查了多项式的次数和项、单项式的次数掌握多项式的项和次数及单项式的次数是解决本题的关键注意区分单项式与多项式的次数多项式的次数是多项式中次数最高的项的次数,不是所有字母指数的和【考点11 与数有关的规律探索】【例11】(2019秋灌云县期中)根据图中数字的规律,则x+y的值是()A729B550C593D738【分析】观察发现,图中第二行左边的数比第一行数的平方大1,第二行右边的数第二行左边的数第一行的数+第一行的数,依此规律先求x,再求y即可【解答】解:522+1,1252+2;1742+1,72174+4;3762+1,228376+6;x82+165,y658+8528,

45、x+y65+528593故选:C【点评】考查了规律型:数字的变化类,关键是由图形得到第二行左边的数比第一行数的平方大1,第二行右边的数第二行左边的数第一行的数+第一行的数【变式11-1】(2019秋安庆期中)将全体正奇数排成一个三角形数阵如下,按照以上排列的规律,第19行第11个数是()A363B361C359D357【分析】根据数字的变化类寻找每一行数字的变化规律即可求解【解答】解:观察所给数阵,得每一行的变化规律如下:第一行的第一个数:10+11第二行的第一个数:21+13第三行的第一个数:32+17第n行的第一个数:n(n1)+1第19行的第一个数:1918+1343第19行的第11个数

46、:343+102363故选:A【点评】本题考查了数字的变化类,解决本题的关键是寻找每一行数字的变化规律【变式11-2】(2020春竹溪县期末)将全体自然数按下面的方式进行排列,按照这样的排列规律,2020应位于()A位B位C位D位【分析】观察图形不难发现,每4个数为一个循环组依次循环,因为2020是第2021个数,所以用2021除以4,再根据商和余数的情况确定2020所在的位置即可【解答】解:由图可知,每4个数为一个循环组依次循环,2020是第2021个数,20214505余1,2020应位于第506循环组的第1个数,在A位故选:A【点评】本题是对数字变化规律的考查,观察出每4个数为一个循环组

47、依次循环是解题的关键,要注意2020是第2021个数【变式11-3】(2020昆明模拟)按规律排列的一列数:-12,25,-38,411,-514,则第2020个数是【分析】先分析符号,第奇数个数据为负,第偶数个数据为正,再分析分子规律:依次为1,2,3,4,5,连续的正整数,接着分析分母的规律:每个分母分别为对应分子的3倍少1的数,按此规律写出第2020个数便可【解答】解:-12=(-1)1131-1,25=(-1)2232-1,-38=(-1)3333-1,411=(-1)4434-1,-514=(-1)5535-1,由上可知第n个数为:(-1)nn3n-1,第2020个数是:(-1)20

48、20202032020-1=20206059故答案为:20206059【点评】此题考查了数字的变化类,让学生学会观察,及时总结,得出其中的规律是解题的关键,注意分母的变化,找出分母的变化规律是难点【考点12 与式有关的规律探索】【例12】(2019秋武安市期中)从2开始,连续n个偶数相加的合计为S,它们和的情况如下表:(1)若n8时,则S的值为 (2)根据表中的规律猜想:用n的式子表示S的公式为:S2+4+6+8+2n 加数的个数nS121222+462332+4+6123442+4+6+8204552+4+6+8+103056(3)根据上题的规律计算2+4+6+8+10+2018+2020的

49、值【分析】(1)根据题意,可以求得当n8时,对应的S的值;(2)根据表格中的数据,可以写出S的值;(3)根据(2)中的结论,可以求得所求式子的值【解答】解:(1)当n8时,S2+4+6+16(2+16)418472,故答案为:72;(2)由表格中的数据可知,S2+4+6+8+2nn(n+1),故答案为:n(n+1);(3)2+4+6+8+10+2018+2020(20202)(20202+1)101010111021110【点评】本题考查数字的变化类、列代数式,解答本题的关键是明确题意,发现题目中数字的变化规律,求出相应的数据【变式12-1】(2019秋自贡期中)已知a是不为1的有理数,我们把

50、11-a称为a的差倒数,如2的差倒数是11-2=-1现已知a1=12,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数(1)求a2,a3,a4的值(2)根据(1)的计算结果,请猜想并写出a2018a2019a2020的值(3)计算:a1+a2+a3+a2018+a2019【分析】(1)根据题意,可以分别计算出a2,a3,a4的值;(2)根据(1)中式子的值,可以发现数字的变化特点,从而可以求得a2018a2019a2020的值;(3)根据前面发现的数字的特点,可以求得所求式子的值【解答】解:(1)a1=12,a2=11-12=2,a3=11-2=-1,a4=11-(-1)=12,即a

51、2,a3,a4的值分别为2,1,12;(2)201836722,a2018a2019a20202(1)121;(3)20193673,12+2+(1)=32,a1+a2+a3+a2018+a2019=32673=20192【点评】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化特点,求出所求式子的值【变式12-2】(2019秋方城县期中)小学的时候我们已经学过分数的加减法法则:“同分母分数相加减,分母不变,分子相加减;异分母分数相加减,先通分,转化为同分母分数,再加减”如:12-13=323-223=3-223=123=16,反之,这个式子仍然成立,即:16=123=3-2

52、23=323-223=12-13(1)问题发现观察下列等式:112=2-112=212-112=1-12,123=3-223=323-223=12-13,134=4-334=434-323=13-14,猜想并写出第n个式子的结果:1n(n+1)= (直接写出结果,不说明理由)(2)类比探究将(1)中的的三个等式左右两边分别相加得:112+123+134=1-12+12-13+13-14=1-14=34,类比该问题的做法,请直接写出下列各式的结果:112+123+134+120192020= ;112+123+134+1n(n+1)= ;(3)拓展延伸计算:113+135+157+199101【

53、分析】(1)根据题目中的式子可以写出第n个式子的结果;(2)根据题目中的式子的特点和(1)中的结果,可以求得所求式子的值;根据题目中的式子的特点和(1)中的结果,可以求得所求式子的值;(3)根据题目中式子的特点,可以求得所求式子的值【解答】解:(1)由题目中的式子可得,1n(n+1)=1n-1n+1,故答案为:1n-1n+1;(2)112+123+134+1201920201-12+12-13+13-14+12019-120201-12020=20192020,故答案为:20192020;112+123+134+1n(n+1)1-12+12-13+13-14+1n-1n+11-1n+1=nn+

54、1,故答案为:nn+1;(3)113+135+157+199101=12(1-13+13-15+15-17+199-1101)=12(1-1101)=12100101 =50101【点评】本题考查数字的变化类、有理数的混合运算,解答本题的关键是明确题意,发现题目中式子的变化特点,求出所求式子的值【变式12-3】(2020春淮阴区期中)阅读材料:求1+2+22+23+24+22020的值解:设S1+2+22+23+24+22020,将等式两边同时乘以2得,2S2+22+23+24+25+22021将下式减去上式,得2SS220211,即S220211即1+2+22+23+24+220202202

55、11仿照此法计算:(1)1+3+32+33+320;(2)1+12+122+123+12100【分析】(1)仿照阅读材料中的方法求出所求即可;(2)仿照阅读材料中的方法求出所求即可【解答】解:(1)设S1+3+32+33+320,则2S3+32+33+321,3SS3211,即S=321-12,则1+3+32+33+320=321-12;(2)设S1+12+122+123+12100,则12S=12+122+123+12100+12101,S-12S1-12101=2101-12101,即S=21101-12100,则S1+12+122+123+12100=21101-12100【点评】此题考

56、查了规律型:数字的变化类,以及有理数的混合运算,弄清题中的规律是解本题的关键【考点13 与图形排列有关的规律探索】【例13】(2020春鄂州期中)如图图形都是由同样大小的菱形按照一定规律所组成的,其中第个图形中一共有3个菱形,第个图形中一共有7个菱形,第个图形中一共有13个菱形,按此规律排列下去,第个图形中菱形的个数为()A42B43C56D57【分析】设第n个图形中一共有an个菱形(n为正整数),根据各图形中菱形个数的变化可得出变化规律“ann2+n+1(n为正整数)”,再代入n6即可求出结论【解答】解:设第n个图形中一共有an个菱形(n为正整数),a112+23,a222+37,a332+

57、413,a442+521,ann2+n+1(n为正整数),a662+743故选:B【点评】本题考查了规律型:图形的变化类,根据各图形中菱形个数的变化,找出变化规律“ann2+n+1(n为正整数)”是解题的关键【变式13-1】(2019秋江阴市期中)观察如图所示一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,按此规律第10个图中共有点的个数是()A109个B136个C166个D199个【分析】根据题目中的图形,可以发现点的个数的变化规律,从而可以得到第10个图中点的个数,本题得以解决【解答】解:由图可得,第1个图中点的个数为:1+314,第2个图中点

58、的个数为:1+31+3210,第3个图中点的个数为:1+31+32+3319,第10个图中点的个数为:1+31+32+33+3101+3+6+9+30166,故选:C【点评】本题考查图形的变化类,解答本题的关键是明确题意,利用数形结合的思想解答【变式13-2】(2019秋青岛期中)将图1中的正方形剪开得到图2,则图2中共有4个正方形;将图2中的一个正方形剪开得到图3,图3中共有7个正方形;将图3中4个较小的正方形中的一个剪开得到图4,则图4中共有10个正方形,照这个规律剪下去(1)根据图中的规律补全下表:图形标号123456n正方形个数14710(2)求第几幅图形中有2020个正方形?【分析】

59、(1)第1个图形有正方形1个,第2个图形有正方形4个,第3个图形有正方形7个,第4个图形有正方形10个,第n个图形有正方形(3n2)个,计算出结果填上即可;(2)由第n个图形有正方形(3n2)个,得出3n22020,解得n674【解答】解:(1)第1个图形有正方形1个,第2个图形有正方形4个,第3个图形有正方形7个,第4个图形有正方形10个,第n个图形有正方形(3n2)个,第5个图形有正方形13个,第6个图形有正方形16个,补全表如下:(2)由第n个图形有正方形(3n2)个,得出:3n22020,解得:n674,第674幅图形中有2020个正方形【点评】本题考查了图形的变化规律,仔细观察,得出

60、规律是解题的关键【变式13-3】(2019秋延平区期中)某餐厅中1张餐桌可坐6人,有以下两种摆放方式:(1)对于方式一:4张桌子拼在一起可坐 人;对于方式二,n张桌子拼在一起可坐 人;(2)该餐厅有40张这样的长方形桌子,若按方式一每5张拼成一张大桌子,则40张桌子可拼成8张大桌子,共可坐多少人?(3)在(2)中,若改成每8张拼成一张大桌子,按方式二的拼法,则40张桌子共可坐多少人?(4)一天中午,该餐厅来了98位顾客共同就餐,要求用满座位,但餐厅中只有25张这样的长方形桌子可用,若你是这家餐厅的经理,你打算选择哪种方式来摆餐桌呢(不考虑场地等因素)?【分析】(1)根据题意和图形可以解答本题;

61、(2)根据题意和题目中的数据可以解答本题;(3)根据题意和题目中的数据可以解答本题;(4)根据题意可以写出相应的方案,本题答案不唯一,只要符合题意即可【解答】解:(1)对于方式一:4张桌子拼在一起可坐2+4418(人),对于方式二,n张桌子拼在一起可坐:(2n+4)人,故答案为:18;(2n+4);(2)按方式一,每5张拼成一张大桌子,一个大桌可坐2+4522(人),则拼成8张大桌子可坐228176(人),答:按方式一每5张拼成一张大桌子,则40张桌子可拼成8张大桌子,共可坐176人;(3)按方式二,每8张拼成一张大桌子,一个大桌可坐28+420(人),则拼成408=5张大桌子可坐205100

62、(人),答:按方式二的拼法,则40张桌子共可坐100人;(4)因为一张小桌可坐6人,当n25时,共坐62515098,有多空位,以下是几张小桌拼成一张大桌的座位数列表供分析:连拼数目座位2张连拼3张连拼4张连拼5张连拼6张连拼8张连拼方式一101418222634方式二81012141618经分析,用单一方式摆放难以实现要求,所以可考虑两种方式搭配,观察思考可得:将16张桌子按方式一摆成8张连拼的2个大桌,余下9张桌子按方式二摆成3张连拼的3个大桌,234+31098,正好坐满(方案不唯一,或用以下方案)设用x张桌子连拼成一个大桌摆成方式一,则用(25x)张桌子连拼成一个大桌摆成方式二,则可坐

63、人数为:4x+2+2(25x)+42x+5698可得:x21,25x4答:按方式一,用21张桌子连拼成一大桌,按方式二,用4张桌子连拼成一大桌,即可坐满98人【点评】本题考查图形的变化类,解答本题的关键是明确题意,利用数形结合的思想解答【考点14 同类项的定义】【方法点拨】解题关键是掌握同类项的定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项【例14】(2019秋西城区校级期中)下列各组式子中是同类项的是()A2x3与3x2B12ax 与8bxCx4与a4D23与32【分析】根据同类项的概念判断即可【解答】解:A、2x3与3x2,所含字母相同,但相同字母的指数不相同,不是同类项

64、;B、12ax 与8bx,所含字母不相同,不是同类项;C、x4与a4,所含字母不相同,不是同类项;D、23与32,是同类项,故选:D【点评】本题考查的是同类项的概念,所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项【变式14-1】(2020春淇县期中)2a2m+3b5与3a5bm2n是同类项,则(m+n)2020的值是()A1B1C2D4【分析】先根据同类项的概念得出2m+35,5m2n,解之求出m、n的值,再代入计算可得【解答】解:2a2m+3b5与3a5bm2n是同类项,2m+35,5m2n,解得m1,n2,则(12)2020(1)20201,故选:A【点评】本题主要考查同类项,

65、解题的关键是掌握同类项的概念:所含字母相同,并且相同字母的指数也相同【变式14-2】(2019秋路南区期中)如果单项式3xay5与x3ya+b的和是单项式,那么a与b的值分别是()Aa3,b5Ba5,b3Ca3,b2Da2,b3【分析】由单项式3xay5与x3ya+b的和仍是单项式知:单项式3xay5与x3ya+b是同类项,根据同类项的概念列出关于a、b的方程,解之求得a、b的值【解答】解:由题意,得a3,a+b5所以a3,b2故选:C【点评】本题主要考查同类项,解题的关键是熟练掌握同类项的概念:所含字母相同,并且相同字母的指数也相同【变式14-3】(2019秋牡丹江期中)如果2x3y|n|与

66、-13xm+1y的和是单项式,则m+n的值是()A1B1C1D3或1【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出m、n的值,再代入所求式子计算即可【解答】解:2x3y|n|与-13xm+1y的和是单项式,m+13,|n|1,解得m2,n1,m+n2+13或m+n211即m+n的值是3或1故选:D【点评】本题考查了同类项的知识,注意同类项中的两个相同,所含字母相同,相同字母的指数相同【考点15 合并同类项(不含某项)】【方法点拨】解题关键是首先进行合并同类项,不含某项,则该项的系数为0,从而求得结果.【例15】(2019秋九龙坡区期中)若代数式x22kxy+y26xy+9不

67、含xy项,则k的值为()A3B-12C0D3【分析】将含xy的项进行合并,然后令其系数为0即可求出k的值【解答】解:x22kxy+y26xy+9令2k60,k3故选:D【点评】本题考查多项式的概念,涉及一元一次方程的解法【变式15-1】(2019秋西城区校级期中)若关于x的多项式x4ax3+x35x2bx3x1不存在含x的一次项和三次项,则a+b 【分析】先确定三次项及一次项的系数,再令其为0即可得到a、b的值,再根据代数式求值,可得答案【解答】解:x4ax3+x35x2bx3x1x4+(1a)x35x2(b+3)x1,多项式x4ax3+x35x2bx3x1不存在含x的一次项和三次项,1a0,

68、b+30,解得a1,b3,a+b132故答案为:2【点评】本题考查了多项式,在多项式中不含哪次项,则那次项的系数为0【变式15-2】(2019秋海淀区校级期中)若关于x,y的多项式my3+nx2y+2y3x2y+y中不含三次项,则2m+3n 【分析】先合并同类项,根据已知得出m+20,n10,求出m、n的值,再代入求出即可【解答】解:my3+nx2y+2y3x2y+y(m+2)y3+(n1)x2y+y,关于x,y的多项式my3+nx2y+2y3x2y+y中不含三次项,m+20,n10,m2,n1,2m+3n2(2)+311,故答案为:1【点评】本题考查了合并同类项的法则,多项式,求代数式的值,

69、解一元一次方程等知识点,能求出m、n的值是解此题的关键【变式15-3】(2019秋东台市期中)已知代数式2x2+axy+62bx2+3x5y1的值与字母x的取值无关,求ab的值【分析】根据题意可得22b0,a+30,解出a、b的值,进而可得ab的值【解答】解:2x2+axy+62bx2+3x5y1(22b)x2+(a+3)x6y+5,代数式2x2+axy+62bx2+3x5y1的值与字母x的取值无关,22b0,a+30,解得:b1,a3,则ab3【点评】此题主要考查了合并同类项,关键是掌握合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变【考点16 添括号与去括号】【

70、方法点拨】解题关键是掌握(1)括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“”,去括号后,括号里的各项都改变符号运用这一法则去括号;(2)添括号后,括号前是“+”,括号里的各项都不改变符号;添括号后,括号前是“”,括号里的各项都改变符号运用这一法则添括号【例16】(2019秋大东区期末)下列去括号或添括号的变形中,正确的是()A2a(5bc)2a5bcB3a+5(2b1)3a+10b1C4a+3b2c4a+(3b2c)Dmn+a2bm(n+a2b)【分析】根据去括号和添括号法则逐个判断即可【解答】解:A、2a(5bc)2a5b+c,故本选项不符合题意;B、3a+5(2b1)3a

71、+10b5,故本选项不符合题意;C、4a+3b2c4a+(3b2c),故本选项符合题意;D、mn+a2bm(na+2b),故本选项不符合题意;故选:C【点评】本题考查了去括号和添括号法则,能灵活运用法则内容进行变形是解此题的关键【变式16-1】(2019秋邓州市期末)在等式1a2+2abb21()中,括号里应填()Aa22ab+b2Ba22abb2Ca22ab+b2Da2+2abb2【分析】根据减法的性质可知,1a2+2abb21(a22ab+b2)解答即可【解答】解:1a2+2abb21(a22ab+b2),故选:A【点评】此题考查填括号问题,完成本题要注意分析式中各项的特点,然后利用填括号

72、的法则进行分析解答【变式16-2】(2019秋金台区期末)已知ab3,c+d2,则(b+c)(ad)的值为()A1B5C5D1【分析】先把括号去掉,重新组合后再添括号【解答】解:因为(b+c)(ad)b+ca+d(ba)+(c+d)(ab)+(c+d)(1),所以把ab3、c+d2代入(1)得:原式(3)+25故选:B【点评】(1)括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“”,去括号后,括号里的各项都改变符号运用这一法则去括号;(2)添括号后,括号前是“+”,括号里的各项都不改变符号;添括号后,括号前是“”,括号里的各项都改变符号运用这一法则添括号【变式16-3】(2019

73、秋杨浦区校级月考)不改变式子的值,把括号前的符号变成相反的符号xy(y3+x21) 【分析】本题添了1个括号,且所添的括号前为负号,括号内各项改变符号【解答】解:根据题意得xy(y3+x21)xy+(y3x2+1)故答案为:xy+(y3x2+1)【点评】本题考查添括号的方法:添括号时,若括号前是“+”,添括号后,括号里的各项都不改变符号;若括号前是“”,添括号后,括号里的各项都改变符号【考点17 整式的加减】【例17】(2019秋雅安期末)一个多项式加上12y+7x+z2等于5y+3x15z2,则这个多项式是()A7y4x16z2B7y+4x+16z2C17y+10x14z2D7y+4x16z

74、2【分析】根据题意列出关系式,去括号合并即可得到结果【解答】解:根据题意得:(5y+3x15z2)(12y+7x+z2)5y+3x15z212y7xz27y4x16z2,故选:A【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键【变式17-1】(2019秋东阿县期末)设Mx28x4,N2x28x3,那么M与N的大小关系是()AMNBMNCMND无法确定【分析】利用作差法比较即可【解答】解:Mx28x4,N2x28x3,MNx28x42x2+8x+3x21,x20,x20,即x2110,MN0,则MN,故选:C【点评】此题考查了整式的加减,弄清作差法比较大小的方法是解本题的关键【变式1

75、7-2】(2019秋潍坊期末)一个多项式M减去多项式2x2+5x3,小马虎同学却误解为先加上这个多项式,结果得x2+3x+7,则多项式M是()A3x22x+10Bx2+8x+4C3x2x+10Dx28x4【分析】根据题意列出关系式,去括号合并即可得到结果【解答】解:根据题意得:M(x2+3x+7)(2x2+5x3)x2+3x+7+2x25x+33x22x+10,故选:A【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键【变式17-3】(2019秋石城县期末)在整式的加减练习课中,已知A3a2b2ab2+abc,小江同学错将“2AB”看成“2A+B”,算得错误结果是4a2b3ab2+4

76、abc,已知请你解决以下问题:(1)求出整式B;(2)求正确计算结果;(3)若增加条件:a、b满足|a4|+(b+1)20,你能求出(2)中代数式的值吗?如果能,请求出最后的值;如果不能,请说明理由【分析】(1)将错就错列出关系式,去括号合并即可确定出B;(2)把A与B代入2AB中,去括号合并即可得到正确结果;(3)利用非负数的性质求出a与b的值,代入(2)的化简结果计算即可求出值【解答】解:(1)由题意得:B4a2b3ab2+4abc2A4a2b3ab2+4abc2(3a2b2ab2+abc)4a2b3ab2+4abc6a2b+4ab22abc2a2b+ab2+2abc;(2)正确结果是:2

77、AB2(3a2b2ab2+abc)(2a2b+ab2+2abc)6a2b4ab2+2abc+2a2bab22abc8a2b5ab2;(3)能算出结果,a、b满足|a4|+(b+1)20,a40,b+10,解得:a4,b1,把a4,b1代入得:8a2b5ab2842(1)54(1)2816(1)54112820148【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键【考点18 整式加减的应用】【例18】(2019秋香洲区期末)把一个大正方形和四个相同的小正方形按图、两种方式摆放,则大正方形的周长与小正方形的周长的差是()Aa+2bBa+bC3a+bDa+3b【分析】根据大正方形和四个相

78、同的小正方形按图、两种方式摆放,求出大正方形的周长与小正方形的周长即可【解答】解:设小正方形的边长为x,则a2xb+2x,则4xab,所以大正方形的周长小正方形的周长4(a2x)4x4a12x4a3a+3ba+3b故选:D【点评】本题考查了整式的加减,解决本题的关键是观察图形写出代数式【变式18-1】(2019秋鄞州区期末)如图,大长方形被分割成4个标号分别为(1)(2)(3)(4)的小正方形和5个小长方形,其中标号为(5)的小长方形的周长为a,则大长方形的周长为()A3aB4aC5aD6a【分析】设标号为(5)的小长方形长为y,宽为x,然后可得小正方形(1)(2)(3)(4)的边长,进而可得

79、大长方形的边长,然后求周长即可【解答】解:设标号为(5)的小长方形长为y,宽为x,(1)(2)(3)(4)的小正方形,(1)(2)的边长均为x,(3)(4)的边长均为y,大长方形的边长可表示为2x+y,2y+x,周长为2(2x+y+2y+x)6(x+y),(5)的小长方形的周长为a,2(x+y)a,6(x+y)3a,故选:A【点评】此题主要考查了整式的加减,关键是找出(5)和大长方形周长的关系【变式18-2】(2020余姚市模拟)在矩形ABCD内,将两张边长分别为a和b(ab)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用

80、阴影表示,设图2中阴影部分的周长与图1中阴影部分的周长的差为l,若要知道l的值,只要测量图中哪条线段的长()AaBbCADDAB【分析】根据平移的知识和周长的定义,列出算式l2AD2b+4AB(2AD+2AB2b),再去括号,合并同类项即可求解【解答】解:图1中阴影部分的周长2AD+2AB2b,图2中阴影部分的周长2AD2b+4AB,l2AD2b+4AB(2AD+2AB2b)2AD2b+4AB2AD2AB+2b2AB故若要知道l的值,只要测量图中线段AB的长故选:D【点评】考查了整式的加减,周长的定义,关键是得到图2中阴影部分的周长与图1中阴影部分的周长【变式18-3】(2020春北仑区期末)

81、如图,把四张大小相同的长方形卡片(如图)按图2、图两种方式放在一个底面为长方形(长比宽多5cm)的盒底上,底面未被卡片覆盖的部分用阴影表示,若记图中阴影部分的周长为C1,图3中阴影部分的周长为C2,那么C1比C2大 cm【分析】此题要先设小长方形的长为acm,宽为bcm,再结合图形分别得出图形的阴影周长和图形的阴影周长,比较后即可求出答案【解答】解:设小长方形的长为acm,宽为bcm,大长方形的宽为xcm,长为(x+5)cm,阴影周长为:2(x+5+x)4x+10,下面的周长为:2(x2b+x+52b),上面的总周长为:2(x+5a+xa),总周长为:2(x2b+x+52b)+2(x+5a+x

82、a)4(x+5)+4x4(a+2b),又a+2bx+5,4(x+5)+4x4(a+2b)4x,C2C34x+104x10(cm),故答案为10【点评】此题主要考查整式的加减的运用,做此类题要善于观察,在第个图形中利用割补法进行计算,很容易计算得出结果【考点19 整式的化简求值(化繁为简再求值)】【例19】(2019秋沙坪坝区期末)先化简,再求值:2ab+6(12a2b+ab2)3a2b2(1ab2ab2),其中a为最大的负整数,b为最小的正整数【分析】直接去括号进而合并同类项,再得出a,b的值代入求出答案【解答】解:原式2ab+3a2b+6ab23a2b+22ab4ab2(2ab2ab)+2+

83、(3a2b3a2b)+(6ab24ab2)2ab2+2,a为最大的负整数,b为最小的正整数,a1,b1,原式2(1)1+20【点评】此题主要考查了整式的加减化简求值,正确合并同类项是解题关键【变式19-1】(2019秋渝中区校级期末)先化简再求值:3a2b2ab22(ab-32a2b)+ab+3ab2,其中a,b满足(a+4)2+|b-12|0【分析】直接去括号进而合并同类项,进而结合偶次方以及绝对值的性质得出a,b的值,即可代入得出答案【解答】解:原式3a2b2ab2+2(ab-32a2b)ab+3ab23a2b2ab2+2ab3a2bab+3ab2(3a2b3a2b)+(2ab2+3ab2

84、)+(2abab)ab2+ab,(a+4)2+|b-12|0,a+40,b-12=0,解得:a4,b=12,原式4(12)2+(4)12123【点评】此题主要考查了整式的加减化简求值,正确合并同类项是解题关键【变式19-2】(2019秋呼和浩特期末)已知代数式A6x2y+4xy22x5,B3x2y+2xy2x+2y3(1)先化简AB,再计算当x1,y2时AB的值;(2)请问A2B的值与x,y的取值是否有关系?试说明理由【分析】(1)根据去括号法则、合并同类项法则把原式化简,代入计算即可;(2)根据去括号法则、合并同类项法则把原式化简,根据化简结果解答【解答】解:(1)AB(6x2y+4xy22

85、x5)(3x2y+2xy2x+2y3)6x2y+4xy22x5+3x2y2xy2+x2y+3(6+3)x2y+(42)xy2+(2+1)x2y5+33x2y+2xy2x2y2,当x1,y2时,AB312(2)+21(2)212(2)26+81+4215;(2)A2B(6x2y+4xy22x5)2(3x2y+2xy2x+2y3)6x2y+4xy22x5+6x2y4xy2+2x4y+6(6+6)x2y+(44)xy2+(2+2)x4y5+64y+1由化简结果可知,A2B的值与x的取值没有关系,与y的取值有关系【点评】本题考查的是整式的化简求值,掌握整式的加减混合运算法则是解题的关键【变式19-3】

86、(2019秋南开区期末)已知Aa22b2+2ab3,B2a2b2-25ab-15(1)求2(A+B)3(2AB)的值(结果用化简后的a、b的式子表示);(2)当|a+12|与b2互为相反数时,求(1)中式子的值【分析】(1)根据整式的混合运算法则计算;(2)根据非负数的性质求出a、b,代入计算【解答】解:(1)2(A+B)3(2AB)2A+2B6A+3B4A+5B4(a22b2+2ab3)+5(2a2b2-25ab-15)4a2+8b28ab+12+10a25b22ab16a2+3b210ab+11;(2)|a+12|与b2互为相反数,|a+12|+b20,则a=-12,b0,6a2+3b21

87、0ab+11614+11=252【点评】本题考查的是整式的混合运算、非负数的性质,掌握整式的混合运算法则是解题的关键【考点20 整式的化简求值(整体代入求值)】【例20】(2019秋海陵区校级期中)已知A3x2x+2y4xy,Bx22xy+xy(1)求A3B的值(2)当x+y=56,xy1,求A3B的值(3)若A3B的值与y的取值无关,求x的值【分析】(1)把A与B代入A3B中,去括号合并即可得到结果;(2)把已知等式代入计算即可求出所求;(3)把A3B结果变形后,根据其值与y的取值无关,确定出x的值即可【解答】解:(1)A3x2x+2y4xy,Bx22xy+xy,A3B3x2x+2y4xy3

88、x2+6x+3y3xy5x+5y7xy;(2)x+y=56,xy1,A3B5(x+y)7xy=256+7=676;(3)由A3B5x+(57x)y的值与y的取值无关,得到57x0,解得:x=57【点评】此题考查了整式的加减化简求值,熟练掌握运算法则是解本题的关键【变式20-1】(2019秋东阿县期末)阅读材料:“如果代数式5a+3b的值为4,那么代数式2(a+b)+4(2a+b)的值是多少?”我们可以这样来解:原式2a+2b+8a+4b10a+6b2(5a+3b)2(4)8仿照上面的解题方法,完成下面的问题:已知3a7b3,求代数式2(2a+b1)5(4ba)3b的值【分析】原式去括号合并整理

89、后,把已知等式代入计算即可求出值【解答】解:当3a7b3时,原式4a+2b220b+5a3b9a21b23(3a7b)29211【点评】此题考查了整式的加减化简求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键【变式20-2】(2019秋安庆期末)阅读理解:如果代数式:5a+3b4,求代数式2(a+b)+4(2a+b)的值?小颖同学提出了一种解法如下:原式2a+2b+8a+4b10a+6b,把式子5a+3b4两边同时乘以2,得10a+6b8仿照小颖同学的解题方法,完成下面的问题:(1)如果a2a,则a2+a+1 ;(2)已知ab3,求3(ab)5a+5b+5的值;(3)已知a2+2ab

90、2,abb24,求2a2+72ab+12b2的值【分析】(1)已知等式变形,代入所求式子计算即可求出值;(2)原式变形后,把已知等式代入计算即可求出值;(3)原式变形后,将已知等式代入计算即可求出值【解答】解:(1)a2a,即a2+a0,原式1;故答案为:1;(2)ab3,原式3(ab)5(ab)+52(ab)+52(3)+511;(3)a2+2ab2,abb24,原式2a2+4ab-12ab+12b22(a2+2ab)-12(abb2)2(2)-12(4)2【点评】此题考查了整式的加减化简求值,熟练掌握运算法则是解本题的关键【变式20-3】(2019秋开江县期末)阅读材料:我们知道,2x+3

91、xx(2+31)x4x,类似地,我们把(a+b)看成一个整体,则2(a+b)+3(a+b)(a+b)(2+31)(a+b)4(a+b)“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛尝试应用:(1)把(xy)2看成一个整体,求将2(xy)25(xy)2+(xy)2合并的结果;(2)已知2m3n4,求代数式4m6n+5的值;拓广探索:(3)已知a2b5,bc3,3c+d9,求(a+3c)(2b+c)+(b+d)的值【分析】(1)利用整体思想,把(xy)2看成一个整体,合并2(xy)25(xy)2+(xy)2即可得到结果;(2)原式可化为2(2m3n)+5,2m3n4整体代入即可;(3)由(a+3c)(2b+c)+(b+d)得到(a2b)+(bc)+(3c+d),依据a2b5,bc3,3c+d9,整体代入进行计算即可【解答】解:(1)2(xy)25(xy)2+(xy)2(25+1)(xy)22(xy)2;(2)4m6n+52(2m3n)+524+58+513;(3)(a+3c)(2b+c)+(b+d)a+3c2bc+b+d(a2b)+(bc)+(3c+d),a2b5,bc3,3c+d9,原式53+911【点评】此题主要考查了整式的化简求值,关键是注意去括号时符号的变化第 45 页 / 共 45 页

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3