ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:123.50KB ,
资源ID:278636      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-278636-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《创新设计》2016届 数学一轮(理科) 浙江专用 课时作业 阶段回扣练6 WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《创新设计》2016届 数学一轮(理科) 浙江专用 课时作业 阶段回扣练6 WORD版含答案.doc

1、阶段回扣练6不等式(时间:120分钟满分:150分)一、选择题1“|x|2”是“x2x60”的()A充分而不必要条件 B必要而不充分条件C充要条件 D既不充分也不必要条件解析不等式|x|2的解集是(2,2),而不等式x2x60的解集是(2,3),于是当x(2,2)时,可得x(2,3),反之则不成立,故选A.答案A2(2015深圳调研)若实数a,b满足ab,则下列不等式成立的是()A|a|b| Ba3b3C. Dab2b3解析在选项A,C中,当a2,b3时,不等式不成立;D中当a2,b0时,不等式不成立,故选B.答案B3已知一元二次不等式f(x)0的解集为,则f(10x)0的解集为()Ax|x1

2、或xlg 2Bx|1xlg 2Cx|xlg 2Dx|xlg 2解析由已知条件,得010x,解得xlg lg 2.答案D4(2014宁波调研)若一元二次不等式2kx2kx0对一切实数x都成立,则k的取值范围为()A(3,0 B3,0) C3,0 D(3,0)解析由题意可得解得3k0,故选D.答案D5(2014甘肃诊断)设x,y满足则zxy()A有最小值2,无最大值 B有最小值2,最大值3C有最大值3,无最小值 D既无最小值,也无最大值解析由不等式组画出可行域如图阴影部分所示,将zxy变成截距式yxz,所以直线在y轴上的截距的最大值即为z的最大值,直线在y轴上的截距的最小值即为z的最小值,由图可知

3、,当直线过A(2,0)时,截距最小,即zmin022,z无最大值,故选A.答案A6(2015金丽衢十二校联考)已知任意非零实数x,y满足3x24xy(x2y2)恒成立,则实数的最小值为()A4 B5 C. D.解析依题意,得3x24xy3x2x2(2y)24(x2y2),因此有4,当且仅当x2y时取等号,即的最大值是4,结合题意得,故4,即的最小值是4.答案A7已知x0,y0,且1,若x2ym22m恒成立,则实数m的取值范围是()A(,24,) B(,42,)C(2,4) D(4,2)解析x0,y0,且1,x2y(x2y)4 42 8,当且仅当,即x4,y2时取等号,(x2y)min8,要使x

4、2ym22m恒成立,只需(x2y)minm22m恒成立,即8m22m,解得4m2.答案D8(2014山东卷)已知x,y满足约束条件当目标函数zaxby(a0,b0)在该约束条件下取到最小值2时,a2b2的最小值为()A5 B4C. D2解析不等式组表示的平面区域为图中的阴影部分由于a0,b0,所以目标函数zaxby在点A(2,1)处取得最小值,即2ab2.法一a2b2a2(22a)25a28a20(a4)244,即a2b2的最小值为4.法二表示坐标原点与直线2ab2上的点之间的距离,故的最小值为2,即a2b2的最小值为4.答案B二、填空题9若a0,b0,且ln(ab)0,则的最小值是_解析由a

5、0,b0,ln(ab)0得故4,当且仅当ab时上式取“”答案410(2014重庆模拟)若关于x的不等式axb的解集为,则关于x的不等式ax2bxa0的解集为_解析依题意得即a5b0,不等式ax2bxa0,即5bx2bx4b0(b0),5x2x40,解得1x.因此,不等式ax2bxa0的解集是.答案11(2015舟山质量检测)设x,y满足约束条件 若目标函数z2x3y取得最小值1,则c的值为_解析依题意,在坐标平面内画出题中的不等式组表示的平面区域及直线2x3y1,结合图形可知,要满足题意,直线2xyc0需经过直线2x3y1与直线x2的交点,即点(2,1),于是有221c0,c5(经检验,符合题

6、意)答案512(2014南昌模拟)若不等式x22x2|a2|对于一切实数x均成立,则实数a的取值范围是_解析依题意,函数yx22x2(x1)21的最小值是1,于是有|a2|1,即1a21,1a3,即实数a的取值范围是(1,3)答案(1,3)13某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y(单位:万元)与机器运转时间x(单位:年)的关系为yx218x25(xN*),则当每台机器运转_年时,年平均利润最大,最大值是_万元解析每台机器运转x年的年平均利润为18,而x0,故1828,当且仅当x5时等号成立,此时年平均利润最大,最大值为8万元答案5814(2015广州综合测

7、试)设x,y满足约束条件若目标函数zaxby(a0,b0)的最大值为8,则ab的最大值为_解析在坐标平面内画出题中的不等式组表示的平面区域及直线axby0,平移该直线,当平移到经过该平面区域内的点(1,4)时,相应直线在y轴上的截距达到最大,此时zaxby取得最大值,于是有a4b8,8a4b24,ab4,当且仅当a4b4时取等号,因此ab的最大值为4.答案415已知函数f(x)若对任意的xR,不等式f(x)m2m恒成立,则实数m的取值范围为_解析f(x)x2x2(x1),故当x时,f(x)在(,1)上的最大值为;函数f(x)x,x(1,)为单调递减函数,故x(1,)时,f(x)f(1)0,综上

8、,f(x)在R上的最大值为.由m2m解得m或m1.答案(,1,)三、解答题16解不等式:ax2(a1)x10.解若a0,原不等式等价于x11.若a0,解得x1.若a0,原不等式等价于(x1)0.当a1时,1,(x1)1时,1,解(x1)0得x1;当0a1,解(x1)0得1x.综上所述:当a0时,解集为x|x1;当a0时,解集为x|x1;当0a1时,解集为x|1x1时,解集为x|x117(2013绍兴模拟)经市场调查,某旅游城市在过去的一个月内(以30天计),第t天(1t30,tN)的旅游人数f(t)(万人)近似地满足f(t)4,而人均消费g(t)(元)近似地满足g(t)120|t20|.(1)

9、求该城市的旅游日收益W(t)(万元)与时间t(1t30,tN)的函数关系式;(2)求该城市旅游日收益的最小值解(1)W(t)f(t)g(t)(4)(120|t20|)(2)当t1,20时,4014t4012441(t5时取最小值)当t(20,30时,因为W(t)5594t递减,所以t30时,W(t)有最小值W(30)443,所以t1,30时,W(t)的最小值为441万元18某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨,B原料2吨;生产每吨乙产品要用A原料1吨,B原料3吨,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元该企业在一个生产周期内消耗A原料不超过13吨,B原料

10、不超过18吨求该企业可获得的最大利润解设生产甲、乙两种产品分别为x吨、y吨,由题意得所获利润z5x3y,画出可行域如图,由解得A(3,4)3,当直线5x3yz经过A点时,zmax27.答该企业可获得的最大利润为27万元19(2015济宁期末)小王大学毕业后,决定利用所学专业进行自主创业经过市场调查,生产某小型电子产品需投入年固定成本为3万元,每生产x万件,需另投入流动成本为W(x)万元,在年产量不足8万件时,W(x)x2x(万元)在年产量不小于8万件时,W(x)6x38(万元)每件产品售价为5元通过市场分析,小王生产的商品能当年全部售完(1)写出年利润L(x)(万元)关于年产量x(万件)的函数

11、解析式;(注:年利润年销售收入固定成本流动成本)(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少?解(1)因为每件商品售价为5元,则x万件商品销售收入为5x万元,依题意得,当0x8时,L(x)5x3x24x3;当x8时,L(x)5x335.所以L(x)(2)当0x8时,L(x)(x6)29.此时,当x6时,L(x)取得最大值L(6)9万元,当x8时,L(x)35352352015,此时,当且仅当x时,即x10时,L(x)取得最大值15万元915,所以当年产量为10万件时,小王在这一商品的生产中所获利润最大最大利润为15万元20(2015温州联考)已知函数f(x)|x

12、21|x2kx.(1)若k2,求方程f(x)0的解;(2)若关于x的方程f(x)0在(0,2)上有两个解x1,x2,求k的取值范围,并证明4.解(1)当k2时,f(x)|x21|x22x,当x210,即x1或x1时,方程化为2x22x10,解得x,01,故舍去,x.当x210,即1x1时,方程化为2x10,解得x.由可知,k2时,方程f(x)0时解为x或x.(2)不妨设0x1x22,f(x)f(x)在(0,1上是单调函数,故f(x)0在(0,1上至多有一个解若1x1x22,则x1x20,故不符合题意,因此0x11x22.由f(x1)0,得k,k1;由f(x2)0,得k2x2,k1.故当k1时,方程f(x)0在(0,2)上有两个解;当0x11x22时,k,2xkx210.消去k,得2x1xx1x20,即2x2,x22,4.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3