ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:2.40MB ,
资源ID:277069      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-277069-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(江苏专用2019_2020学年高中数学课时跟踪检测九导数在实际生活中的应用苏教版选修2_2.doc)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

江苏专用2019_2020学年高中数学课时跟踪检测九导数在实际生活中的应用苏教版选修2_2.doc

1、课时跟踪检测(九)导数在实际生活中的应用课下梯度提能一、基本能力达标1某城市在发展过程中,交通状况逐渐受到大家更多的关注,据有关的统计数据显示,从上午6时到9时,车辆通过该市某一路段的用时y(分钟)与车辆进入该路段的时刻t之间的关系可近似地用如下函数给出:yt3t236t,则在这段时间内,通过该路段用时最多的时刻是()A6时B7时C8时 D9时解析:选Cyt2t36(t12)(t8)令y0,得t8或t12(舍去),则当6t0,当8t9时,y0),yx2,由y0,得x25,x(0,25)时,y0,x(25,)时,y0,所以x25时,y取最大值4内接于半径为R的球且体积最大的圆锥的高为()AR B

2、2RC.R D.R解析:选C设圆锥高为h,底面半径为r,则R2(hR)2r2,r22Rhh2,Vr2hh(2Rhh2)Rh2h3,VRhh2.令V0得hR. 当0h0;当h2R时,V0)要将直径为d的圆木锯成强度最大的横梁,断面的宽x应为_解析:设断面高为h,则h2d2x2.设横梁的强度函数为f(x),则f(x)kxh2kx(d2x2),0xd.令f(x)k(d23x2)0,解得xd(舍去负值)当0x0,f(x)单调递增;当dxd时,f(x)0,f(x)单调递减所以函数f(x)在定义域(0,d)内只有一个极大值点xd.所以xd时,f(x)有最大值答案:d8.如图,内接于抛物线y1x2的矩形AB

3、CD,其中A,B在抛物线上运动,C,D在x轴上运动,则此矩形的面积的最大值是_解析:设CDx,则点C坐标为,点B坐标为,所以矩形ABCD的面积Sf(x)xx(x(0,2)由f(x)x210,得x1(舍去),x2,所以x时,f(x)0,f(x)是递增的,x时,f(x)0,f(x)是递减的,当x时,f(x)取最大值.答案:9.如图,某城市有一块半径为40 m的半圆形绿化区域(以O为圆心,AB为直径),现对其进行改建,在AB的延长线上取点D,OD80 m,在半圆上选定一点C,改建后绿化区域由扇形区域AOC和三角形区域COD组成,其面积为S m2.设AOCx rad.(1)写出S关于x的函数关系式S(

4、x),并指出x的取值范围;(2)试问AOC多大时,改建后的绿化区域面积S取得最大值解:(1)由题意得,S(x)40x404080sin (x)800x1 600sin x(0x)(2)S(x)8001 600cos x.当0x0;当x时,S(x)0.x时,S取得最大值,为m2.10某产品每件成本9元,售价30元,每星期卖出432件如果降低价格,销售量将会增加,且每星期多卖出的商品件数与商品单价的降低值x(单位:元,0x21)的平方成正比已知商品单价降低2元时,一星期多卖出24件(1)将一个星期的商品销售利润表示成关于x的函数yf(x)(2)如何定价才能使一个星期的商品销售利润最大?解:(1)若

5、商品降低x元,则一个星期多卖的商品为kx2件由已知条件,得k2224,解得k6.则有f(x)(30x9)(4326x2)6x3126x2432x9 072,x0,21(2)由(1)得,f(x)18x2252x432.令f(x)0,得x2或x12.当x变化时,f(x),f(x)的变化情况如下表:x0(0,2)2(2,12)12(12,21)21f(x)00f(x)9 0728 66411 6640所以当x12时,f(x)取得极大值因为f(0)9 072,f(12)11 664,f(21)0,所以定价为301218(元),能使一个星期的商品销售利润最大二、综合能力提升1请你设计一个包装盒如图所示,

6、ABCD是边长为60 cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒E,F在AB上,是被切去的一个等腰直角三角形斜边的两个端点设AEFBx(cm)(1)若广告商要求包装盒的侧面积S(cm2)最大,试问x应取何值?(2)某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值解:设包装盒的高为h(cm),底面边长为a(cm)由已知得ax,h(30x),0x30.(1)S4ah8x(30x)8(x15)21 800,所以当x15时,S取得最大值(2)Va2h

7、2(x330x2),V6x(20x)由V0,得x0(舍去)或x20.当x(0,20)时,V0;当x(20,30)时,V0.所以当x20时,V取得极大值,也是最大值此时.即包装盒的高与底面边长的比值为.2某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l.如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米以l2,l1所在的直线分别为x,y轴,建立平面直角坐标系xOy.假设曲线C符合函数y

8、(其中a,b为常数)模型(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为t.请写出公路l长度的函数解析式f(t),并写出其定义域;当t为何值时,公路l的长度最短?求出最短长度解:(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5)将其分别代入y,得解得(2)由(1)知,y(5x20),则点P的坐标为.设在点P处的切线l交x,y轴分别于A,B两点,y,则l的方程为y(xt),由此得A,B.故f(t) ,t5,20设g(t)t2,则g(t)2t.令g(t)0,解得t10.当t(5,10)时,g(t)0,g(t)是减函数;当t(10,20)时,g(t)0,g(t)是增函数从而,当t10时,函数g(t)有极小值,也是最小值,所以g(t)min300,此时f(t)min15.故当t10时,公路l的长度最短,最短长度为15千米

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1