ImageVerifierCode 换一换
格式:DOC , 页数:15 ,大小:993KB ,
资源ID:27540      下载积分:9 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-27540-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(上海市延安中学2018-2019学年高一数学下学期期末考试试题(含解析).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

上海市延安中学2018-2019学年高一数学下学期期末考试试题(含解析).doc

1、上海市延安中学2018-2019学年高一数学下学期期末考试试题(含解析)一.填空题(本大题14题,每题3分,共42分)1.函数的最小正周期是_.【答案】【解析】【分析】根据函数的周期公式计算即可.【详解】函数的最小正周期是.故答案为:【点睛】本题主要考查了正切函数周期公式的应用,属于基础题2.计算:_.【答案】3【解析】【分析】直接利用数列的极限的运算法则求解即可【详解】.故答案为:3【点睛】本题考查数列的极限的运算法则,考查计算能力,属于基础题3.设函数,则_.【答案】【解析】【分析】利用反三角函数的定义,解方程即可【详解】因为函数,由反三角函数的定义,解方程,得,所以.故答案为:【点睛】本

2、题考查了反三角函数的定义,属于基础题4.已知数列是等差数列,若,则公差_.【答案】2【解析】【分析】利用等差数列的通项公式即可得出【详解】设等差数列公差为,解得2故答案为:2【点睛】本题考查了等差数列的通项公式,考查了计算能力,属于基础题5.已知数列等比数列,若,则公比_.【答案】【解析】【分析】利用等比数列的通项公式即可得出【详解】数列是等比数列,若,则,解得,即.故答案为:【点睛】本题考查了等比数列的通项公式,考查了计算能力,属于基础题6.计算:_.【答案】【解析】【分析】由等比数列前n项和公式,得=1,从而求极限即可【详解】1,1=故答案为:【点睛】本题考查了等比数列前n项和公式的应用,

3、以及数列极限的求法,属于基础题7.方程的解集为_.【答案】【解析】【分析】由诱导公式可得,由余弦函数的周期性可得:.【详解】因为方程,由诱导公式得,所以,故答案为:【点睛】本题考查解三角函数的方程,余弦函数的周期性和诱导公式的应用,属于基础题8.已知数列是等差数列,记数列的前项和为,若,则_.【答案】3【解析】【分析】由等差数列的求和公式和性质可得,代入已知式子可得【详解】由等差数列的求和公式和性质可得:,且,.故答案为:3【点睛】本题考查了等差数列的求和公式及性质的应用,属于基础题9.夏季某座高山上的温度从山脚起每升高100米降低0.8度,若山脚的温度是36度,山顶的温度是20度,则这座山的

4、高度是_米【答案】2000【解析】【分析】由题意得,温度下降了,再求出这个温度是由几段100米得出来的,最后乘以100即可.【详解】由题意得,这座山的高度为:米故答案为:2000【点睛】本题结合实际问题考查有理数的混合运算,解题关键是温度差里有几个0.8,属于基础题.10.若 ,则的取值范围是_.【答案】【解析】【分析】利用反函数的运算法则,定义及其性质,求解即可【详解】由,得所以,又因为,所以.故答案为:【点睛】本题考查反余弦函数的运算法则,反函数的定义域,考查学生计算能力,属于基础题11.若函数,的最大值为,则的值是_.【答案】【解析】【分析】利用两角差的正弦公式化简函数的解析式为,由的范

5、围可得的范围,根据最大值可得的值.【详解】函数2(),又的最大值为,所以的最大值为,即=,解得.故答案为:【点睛】本题主要考查两角差的正弦公式的应用,正弦函数的定义域和最值,属于基础题12.已知,且这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则_.【答案】5【解析】【详解】试题分析:由题意得,为等差数列时,一定为等差中项,即,为等比数列时,-2为等比中项,即,所以.考点:等差,等比数列的性质13.已知数列满足,记数列的前项和为,则_.【答案】7500【解析】【分析】讨论的奇偶性,分别化简递推公式,根据等差数列的定义得的通项公式,进而可求.【详解】当是奇数时,1,由,得,所以,是以

6、为首项,以2为公差的等差数列,当为偶数时,1,由,得,所以,是首项为,以4为公差的等差数列,则 ,所以.故答案为:7500【点睛】本题考查数列递推公式的化简,等差数列的通项公式,以及等差数列前n项和公式的应用,也考查了分类讨论思想,属于中档题14.已知数列的通项公式是,若将数列中的项从小到大按如下方式分组:第一组:,第二组:,第三组:,则2018位于第_组.【答案】32【解析】【分析】根据题意可分析第一组、第二组、第三组、中数的个数及最后的数,从中寻找规律使问题得到解决【详解】根据题意:第一组有212个数,最后一个数为4;第二组有422个数,最后一个数为12,即2(2+4);第三组有623个数

7、,最后一个数为24,即2(2+4+6);第n组有2n个数,其中最后一个数为2(2+4+2n)4(1+2+3+n)2n(n+1)当n31时,第31组的最后一个数为231321984,当n32时,第32组的最后一个数为232332112,2018位于第32组故答案为:32【点睛】本题考查观察与分析问题的能力,考查归纳法的应用,从有限项得到一般规律是解决问题的关键点,属于中档题二、选择题(本大题共4题,每题4分,共16分)15.“数列为等比数列”是“数列为等比数列”的()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 非充分非必要条件【答案】A【解析】【分析】数列是等比数列与命题是等比数

8、列是否能互推,然后根据必要条件、充分条件和充要条件的定义进行判断【详解】若数列是等比数列,则,数列是等比数列,若数列是等比数列,则,数列不是等比数列,数列是等比数列是数列是等比数列的充分非必要条件,故选:A【点睛】本题主要考查充分不必要条件的判断,注意等比数列的性质的灵活运用,属于基础题16.设,则()A. B. C. D. 【答案】D【解析】【分析】由得,再计算即可.【详解】,所以故选:D【点睛】本题考查了以数列的通项公式为载体求比值的问题,以及归纳推理的应用,属于基础题17.已知等差数列公差d0,则下列四个命题:数列是递增数列; 数列是递增数列;数列是递增数列; 数列是递增数列;其中正确命

9、题的个数为( )A. 1B. 2C. 3D. 4【答案】B【解析】【分析】对于各个选项中的数列,计算第n+1项与第n项的差,看此差的符号,再根据递增数列的定义得出结论【详解】设等差数列,d0对于,n+1nd0,数列是递增数列成立,是真命题对于,数列,得,所以不一定是正实数,即数列不一定是递增数列,是假命题对于,数列,得,不一定是正实数,故是假命题对于,数列,故数列是递增数列成立,是真命题故选:B【点睛】本题考查用定义判断数列单调性,考查学生的计算能力,正确运用递增数列的定义是关键,属于基础题18.已知数列和数列都是无穷数列,若区间满足下列条件:;则称数列和数列可构成“区间套”,则下列可以构成“

10、区间套”的数列是( )A. ,B. ,C. ,D. ,【答案】C【解析】【分析】直接利用已知条件,判断选项是否满足两个条件即可【详解】由题意,对于A:,不成立,所以A不正确;对于B:由,得不成立,所以B不正确;对于C:,成立,并且也成立,所以C正确;对于D:由,得,不成立,所以D不正确;故选:C【点睛】本题考查新定义理解和运用,考查数列的极限的求法,考查分析问题解决问题的能力及运算能力,属于中档题三、解答题(本大题共4题,共42分)19.解关于的方程:【答案】【解析】【分析】根据方程解出或,利用三角函数的定义解出,再根据终边相同角的表示即可求出.【详解】由,得,所以或,所以或,所以的解集为:.

11、【点睛】本题考查了三角方程的解法,终边相同角的表示,反三角函数的定义,考查计算能力,属于基础题.20.已知数列的前项和为,且,求数列的通项公式.【答案】【解析】【分析】当时,当时,即可得出【详解】已知数列的前项和为,且,当时,当时,检验:当时,不符合上式,【点睛】本题考查了数列递推关系、数列的通项公式,考查了推理能力与计算能力,属于基础题21.已知等比数列是递增数列,且满足:,.(1)求数列的通项公式:(2)设,求数列的前项和.【答案】(1);(2)【解析】【分析】(1)利用等比数列的性质结合已知条件解得首项和公比,由此得通项公式;(2)由(1)得,再利用等差数列的求和公式进行解答即可【详解】

12、(1)由题意,得,又,所以,或 ,由是递增的等比数列,得 ,所以,且,即;(2)由(1)得,得,所以数列是以1为首项,以2为公差的等差数列,所以.【点睛】本题考查了等差数列与等比数列的通项公式,以及等差数列的其前n项和公式的应用,考查了推理能力与计算能力,属于基础题22.已知数列满足,(1)证明:数列是等差数列,并求数列的通项公式;(2)设,数列的前n项和为,求使不等式对一切恒成立的实数的范围【答案】(1)见解析,;(2)【解析】【分析】(1)对递推式两边取倒数化简,即可得出,利用等差数列的通项公式得出,再得出;(2)由(1)得,再使用裂项相消法求出,使用不等式得出的范围,从而得出的范围【详解

13、】(1),两边取倒数,,即,又,数列是以1为首项,2为公差的等差数列, (2)由(1)得,要使不等式Sn对一切恒成立,则的范围为:【点睛】本题考查了构造法求等差数列的通项公式,裂项相消法求数列的和,属于中档题23.己知数列是等比数列,且公比为,记是数列的前项和.(1)若1,1,求的值;(2)若首项,是正整数,满足不等式|63|62,且对于任意正整数都成立,问:这样的数列有几个?【答案】(1);(2)114【解析】【分析】(1)利用等比数列的求和公式,进而可求的值;(2)根据满足不等式|63|62,可确定的范围,进而可得随着的增大而增大,利用,可求解【详解】(1)已知数列是等比数列,且公比为,记是数列的前项和,1, , ,则;(2) 满足不等式|63|62, , ,且,得随着的增大而增大,得 ,又且对于任意正整数都成立,得,且是正整数,满足的个数为:12411+1114个,即有114个,所以有114个数列【点睛】本题以等比数列为载体,考查数列的极限,考查等比数列的求和,考查数列的单调性,属于中档题

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3