ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:85.50KB ,
资源ID:274781      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-274781-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《创新设计》2015高考数学(江苏专用理科)二轮专题整合:规范练4实际应用问题.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《创新设计》2015高考数学(江苏专用理科)二轮专题整合:规范练4实际应用问题.doc

1、规范练(四)实际应用问题1某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式可以近似地表示为y48x8 000,已知此生产线年产量最大为210吨(1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?解(1)每吨平均成本为(万元)则482 4832,当且仅当,即x200时取等号年产量为200吨时,每吨平均成本最低为32万元(2)设年获得总利润为R(x)万元则R(x)40xy40x48x8 00088x8 000(x220)21 680(0

2、x210)R(x)在0,210上是增函数,x210时,R(x)有最大值为(210220)21 6801 660.年产量为210吨时,可获得最大利润1 660万元2某工厂生产某种产品,每日的成本C(单位:万元)与日产量x(单位:吨)满足函数关系式C3x,每日的销售额S(单位:万元)与日产量x的函数关系式S已知每日的利润LSC,且当x2时,L3.(1)求k的值;(2)当日产量为多少吨时,每日的利润可以达到最大,并求出最大值解(1)由题意可得:L因为x2时,L3,所以3222,解得k18.(2)当0x6时,L2x2,所以L2(x8)182(8x)182186.当且仅当2(8x),即x5时取得等号当x

3、6时,L11x5.所以当x5时,L取得最大值6.所以当日产量为5吨时,每日的利润可以达到最大值6万元3某公司生产一种产品,每年需投入固定成本0.5万元,此外每生产100件这样的产品,还需增加投入0.25万元,经市场调查知这种产品年需求量为500件,产品销售数量为t件时,销售所得的收入为万元(1)该公司这种产品的年生产量为x件,生产并销售这种产品所得到的利润关于当年产量x的函数为f(x),求f(x);(2)当该公司的年产量为多少件时,当年所获得的利润最大?解(1)当0500时,f(x)0.05500500212x,故f(x)(2)当0500时,f(x)12x12.故当该公司的年产量为475件时,

4、当年获得的利润最大4如图,一块弓形薄铁片EMF,点M为的中点,其所在圆O的半径为4 dm(圆心O在弓形EMF内),EOF.将弓形薄铁片裁剪成尽可能大的矩形铁片ABCD(不计损耗),ADEF,且点A,D在上,设AOD2.(1)求矩形铁片ABCD的面积S关于的函数关系式;(2)当裁出的矩形铁片ABCD面积最大时,求cos 的值解(1)设矩形铁片的面积为S,AOM.当0时(如图1),AB4cos 2,AD24sin ,SABAD(4cos 2)(24sin )16sin (2cos 1)当时(如图2),AB24cos ,AD24sin ,故SABAD64sin cos 32sin 2.综上得,矩形铁片的面积S关于的函数关系式为S(2)当0时,求导得S16cos (2cos 1)sin (2sin )16(4cos2cos 2)令S0,得cos .记区间内余弦值等于的角为0(唯一存在)列表:(0,0)0S0S增函数极大值减函数又当时,S32sin 2在上单调递减,所以当0即cos 时,矩形的面积最大

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3