ImageVerifierCode 换一换
格式:DOCX , 页数:5 ,大小:185.96KB ,
资源ID:27410      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-27410-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2019-2020学年数学高中人教A版必修2学案:2-3-2平面与平面垂直的判定 WORD版含解析.docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2019-2020学年数学高中人教A版必修2学案:2-3-2平面与平面垂直的判定 WORD版含解析.docx

1、第二章点、直线、平面之间的位置关系2.3直线、平面垂直的判定及其性质2.3.2平面与平面垂直的判定学习目标1.探究平面与平面垂直的判定定理,二面角的定义及应用,培养学生的归纳能力.2.掌握平面与平面垂直的判定定理的应用,培养学生的空间想象能力.3.引导学生总结求二面角的方法,培养学生归纳问题的能力.合作学习一、设计问题,创设情境为了解决实际问题,人们需要研究两个平面所成的角.修筑水坝时,为了使水坝坚固耐用必须使水坝面与水平面成适当的角度;发射人造地球卫星时,使卫星轨道平面与地球赤道平面成一定的角度.为此,我们引入二面角的概念,研究两个平面所成的角.二、信息交流,揭示规律问题1:前边列举过门和墙

2、所在平面的关系,随着门的开启,其所在平面与墙所在平面的相交程度在变,怎样描述这种变化呢?问题2:什么是平面与平面的角呢?问题3:什么是二面角的平面角?问题4:类比直线与平面的垂直,如何判定两个平面垂直呢?三、运用规律,解决问题【例1】 如图,AB是O的直径,PA垂直于O所在的平面,C为圆周上不同于A,B的任意一点,求证:平面PAC平面PBC.【例2】 如图,ABCD是菱形,PA平面ABCD,PA=AD=2,BAD=60.(1)求证:平面PBD平面PAC;(2)求二面角APBD的余弦值.四、变式演练,深化提高如图,已知直四棱柱ABCD-A1B1C1D1的底面是菱形,且DAB=60,AD=AA1,

3、F为棱BB1的中点,M为线段AC1的中点.(1)求证:直线MF平面ABCD;(2)求证:平面AFC1平面ACC1A1;(3)求平面AFC1与平面ABCD所成二面角的大小.五、反思小结,观点提炼本节课我们学习了哪些知识?六、作业精选,巩固提高课本P73习题2.3A组第1,2,3题.参考答案二、问题1:两个平面存在角,角的大小通过平面角来刻画.问题2:(1)二面角的有关概念从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫二面角的棱,这两个半平面叫二面角的面.(2)二面角的画法(3)二面角的表示方法如图中,棱为AB,面分别为,的二面角记作二面角AB.有时为了方便也可在,内(棱以外的半平面

4、部分)分别取点P,Q,将这个二面角记作二面角PABQ .问题3:如图,在二面角l的棱上任一取点O,以点O为垂足,在半平面和内分别作垂直于棱l的射线OA和OB,则射线OA和OB构成的AOB叫做二面角的平面角.再取棱上另一点O,在和内分别作l的垂线OA和OB,则它们组成角AOB.因为OAOA,OBOB,所以AOB及AOB的两边分别平行且方向相同,即AOB=AOB.从上述结论说明了:按照上述方法作出的角的大小,与角的顶点在棱上的位置无关.由此结果引出二面角的平面角概念:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.图中的AOB,AOB都是二面

5、角l的平面角.二面角的大小可以用它的平面角来度量,二面角的平面角是多少度,就说这个二面角是多少度.平面角是直角的二面角叫做直二面角.两个平面互相垂直的定义可表述为:如果两个相交平面所成的二面角为直二面角,那么这两个平面互相垂直.直二面角的画法:如图问题4:一个平面过另一个平面的垂线,则两个平面垂直.两个平面垂直的判定定理符号表述为:ABAB.两个平面垂直的判定定理图形表述为:如图.三、【例1】 证明:设O所在平面为,由已知条件,PA,BC,PABC.C为圆周上不同于A,B的任意一点,AB是O的直径,BCAC.又PA与AC是PAC所在平面内的两条相交直线,BC平面PAC.BC平面PBC,平面PA

6、C平面PBC.【例2】 解:(1)证明:设AC与BD交于点O,连接PO,底面ABCD是菱形,BDAC.PA底面ABCD,BD平面ABCD,PABD.又PAAC=A,BD平面PAC.又BD平面PBD,平面PBD平面PAC.(2)作AFPB于点F,作AEPO交点于E,连接EF,由(1)知AE平面PBD,AEPB.PB平面AEF,PBEF.AFE为二面角APBD的平面角.在RtAEF中,AE=2217,AF=2,sinAFE=AEAF=427,cosAFE=1-(427)2=77.二面角APBD的余弦值为77.四、1.解:(1)证明:延长C1F交CB的延长线于点N,连接AN.F是BB1的中点,F为C

7、1N的中点,B为CN的中点.又M是线段AC1的中点,故MFAN.又MF平面ABCD,AN平面ABCD,MF平面ABCD.(2)证明:连接BD,由直四棱柱ABCD-A1B1C1D1,可知AA1平面ABCD,又BD平面ABCD,A1ABD.四边形ABCD为菱形,ACBD.又ACA1A=A,AC,A1A平面ACC1A1,BD平面ACC1A1.在四边形DANB中,DABN且DA=BN,四边形DANB为平行四边形.故NABD,NA平面ACC1A1.又NA平面AFC1,平面AFC1平面ACC1A1.(3)由(2)知BD平面ACC1A1,又AC1平面ACC1A1,BDAC1.BDNA,AC1NA.又由BDAC,可知NAAC,C1AC就是平面AFC1与平面ABCD所成二面角的平面角或补角.在RtC1AC中,tanC1AC=C1CCA=13,故C1AC=30.平面AFC1与平面ABCD所成二面角的大小为30或150.五、知识总结:利用面面垂直的判定定理找出平面的垂线,然后解决证明垂直问题、平行问题、求角问题、求距离问题等.思想方法总结:转化思想,即把面面关系转化为线面关系,把空间问题转化为平面问题.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3