ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:180.50KB ,
资源ID:273789      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-273789-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2011河南泌阳高考物理一轮复习--量子论初步(内容分析).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2011河南泌阳高考物理一轮复习--量子论初步(内容分析).doc

1、2011河南泌阳高考物理一轮复习-量子论初步(内容分析)基础知识 一、光电效应 1现象:在光(包括不可见光)照射下物体发射出电子的现象叫光电效应现象;所发射的电子叫光电子;光电子定向移动所形成的电流叫光电流。2光电效应规律 (1)任何一种金属都有一个极限频率,入射光必须大于这个极限频率才能产生光电效应 (2)光电子的最大初动能与入射光的强度无关,只随着入射光的频率增大而增大 (3)当入射光的频率大于极限频率时,光电流的强度与入射光的强度成正比 (4)从光照射到产生光电流的时间不超过109s,几乎是瞬时产生的说明:(1)光电效应规律“光电流的强度与入射光的强度成正比”中“光电流的强度指的是光电流

2、的最大值(亦称饱和值),因为光电流未达到最大值之前,其值大小不仅与入射光的强度有关,还与光电管两极间的电压有关只有在光电流达到最大以后才和入射光的强度成正比 (2)这里所说“入射光的强度”,指的是单位时间内入射到金属表面单位面积上的光子的总能量,在入射光频率不变的憎况下,光强正比于单位时间内照射到金属表面上单位面积的光子数但若换用不同频率的光照射,即使光强相同,单位时间内照射到金属表面单位面积的光子数也不相同,因而从金属表面逸出的光电子数也不相同,形成的光电流也不同【例1】某种单色光照射某金属时不能产生光电效应,则下述措施中可能使金属产生光电效应的是 A延长光照时间散 B增大光的强度 C换用波

3、长较短的光照射 D换用频度较低的光照射【解析】由发生光电效应的四个条件可知能不能产生光电效应与入射光的频率和金属板的材料有关,当金属一定时,要发生光电效应,就只有增大入射光的频率,也就是入射光的波长变短,所以C选项正确 二、光子说1光电效应规律中(1)、(2)、(4)条是经典的光的波动理论不能解释的,(1) 极限频率0光的强度由光波的振幅A决定,跟频率无关,只要入射光足够强或照射时间足够长,就应该能发生光电效应 (2) 光电子的最大初动能与光强无关,(3)波动理论还解释不了光电效应发生的时间之短10-9s 能量积累是需要时间的2光子说却能很好地解释光电效应光子说认为: (1)空间传播的光不是连

4、续的,而是一份一份的,每一份叫做一个光子 (2)光子的能量跟它的频率成正比,即 Ehhc 式中的h叫做普朗克恒量,h661034Jsabcdefg爱因斯坦利用光子说解释光电效应过程:入射光照到金属上,有些光子被电子吸收,有些没有被电子吸收;吸收了光子的电子(a、b、c、e、g)动能变大,可能向各个方向运动;有些电子射出金属表面成为光电子(b、c、g),有些没射出(a、e);射出金属表面的电子克服金属中正电荷引力做的功也不相同;只有从金属表面直接飞出的光电子克服正电荷引力做的功最少(g),飞出时动能最大。如果入射光子的能量比这个功的最小值还小,那就不能发生光电效应。这就解释了极限频率的存在;由于

5、光电效应是由一个个光子单独引起的,因此从有光照射到有光电子飞出的时间与照射光的强度无关,几乎是瞬时的。这就解释了光电效应的瞬时性。(3)爱因斯坦光电效应方程:Ek=hW(Ek是光电子的最大初动能;W是逸出功,既从金属表面直接飞出的光电子克服正电荷引力所做的功。)说明:(1)光电效应现象是金属中的自由电子吸收了光子的能量后,其动能足以克服金属离子的引力而逃逸出金属表面,成为光电子不要将光子和光电子看成同一粒子(2)对一定的金属来说,逸出功是一定的照射光的频率越大,光子的能量越大,从金属中逸出的光电子的初动能就越大如果入射粒子的频率较低,它的能量小于金属的逸出功,就不能产生光电效应,这就是存在极限

6、频率的原因【例2】用某种频率的紫外线分别照射铯、锌、铂三种金属,从铯中发射出的光电子的最大初动能是29eV,从锌中发射出的光电子的最大初动能是14eV,铂没有光电子射出,则对这三种金属逸出功大小的判断,下列结论正确的是( ) A铯的逸出功最大,铂的逸出功最小 B锌的逸出功最大,铂的逸出功最小 C铂的逸出功最大,铯的逸出功最小 D铂的逸出功最大,锌的逸出功最小解析:根据爱因斯坦光电效应方程:mvm2h一W当照射光的频率一定时,光子的能量h就是一个定值,在光电效应中的所产生的光电子的最大初动能等于光子的能量减去金属的逸出功最大初动能越大,说明这种金属的电子逸出功越小,若没有光电子射出,说明光子的能

7、量小于电子的逸出功因此说铂的逸出功最大,而铯的逸出功最小 答案:c【例3】入射光线照射到某金属表面上发生光电效应,若入射光的强度减弱,而频率保持不变,那么以下说法中正确的是( ) A从光照到金属表面上到发射出光电子之间的时间间隔将明显增加 B逸出的光电子的最大初动能减小 C单位时间内从金属表面逸出的光电子数目将减小 D有可能不发生光电效应解析:入射光的强度,是指单位时间内入射到金属表面单位面积上的光子的总能量,“入射光的强度减弱而频率不变,”表示单位时间内到达同一金属表面的光子数目减少而每个光子的能量不变 根据对光电效应的研究,只要入射光的频率大于金属的极限频率,那么当入射光照到金属上时,光电

8、子的发射几乎是同时完成的,与入射光的强度无关 具有最大初动能的光电子,是来自金属最表层的电子,当它们吸收了光子的能量后,只要大于金属的逸出功而能摆脱原子核的束缚,就能成为光电子,当光子的能量不变时,光电子的最大初动能也不变 当入射光强度减弱时,仍有光电子从金属表面逸出,但单位时间内逸出的光电子数目也会减少答案:C三.康普顿效应光子电子电子光子散射前散射后光子在介质中和物质微粒相互作用,可能使得光的传播方向转向任何方向(不是反射),这种现象叫做光的散射。在研究电子对X射线的散射时发现:有些散射波的波长比入射波的波长略大。康普顿认为这是因为光子不仅有能量,也具有动量。实验结果证明这个设想是正确的。

9、因此康普顿效应也证明了光具有粒子性。 四、光的波粒二象性1、 干涉、衍射和偏振表明光是一种波;光电效应和康普顿效应表明光是一种粒子;因此现代物理学认为:光具有波粒二象性。2、 大量光子的传播规律体现为波动性;频率低、波长长的光,其波动性越显著3、个别光子的行为体现为粒子性;频率越高、波长越短的光,其粒子性越显著4光在传播过程中往往表现出波动性;在与物质发生作用时往往表现为粒子性;光既具有波动性,又具有粒子性,为说明光的一切行为,只能说光具有波粒二象性说明:光的波粒二象性可作如下解释:(1)既不可把光当成宏观观念中的波,也不可把光当成微观观念中的粒子(2)大量光子产生的效果往往显示出波动性,个别

10、光子产生的效果往往显示出粒子性;频率超低的光波动性越明显,频率越高的光粒子性越明显(3)光在传播过程中往往显示波动性,在与物质作用时往往显示粒子性(4)由E=h,p =h/看出,光的波动性和粒子性并不矛盾:表示粒子性的粒子能量和动量的计算式中都含有表示波的特征的物理量频率和波长。(5)由以上两式和波速公式c=还可以得出:E = p c(6)对干涉现象理解:对亮条纹的解释:波动说:同频率的两列波到达亮纹处振动情况相同;粒子说:光子到达的几率大的地方。对暗条纹的解释:波动说:同频率的两列波到达暗纹振动情况相反;粒子说:光子到达的几率小的地方。五、物质波(德布罗意波)物质分为两大类:实物和场。既然作

11、为场的光有粒子性,那么作为粒子的电子、质子等实物是否也具有波动性?德布罗意由光的波粒二象性的思想推广到微观粒子和任何运动着的物体上去,得出物质波的概念:任何一个运动着的物体都有一种波与它对应,该波的波长=h/p。人们又把这种波叫做德布罗意波。物质波也是概率波。【例4】试估算一个中学生在跑百米时的德布罗意波的波长。解:估计一个中学生的质量m50kg ,百米跑时速度v7m/s ,则m 由计算结果看出,宏观物体的物质波波长非常小,所以很难表现出其波动性。【例5】 为了观察到纳米级的微小结构,需要用到分辨率比光学显微镜更高的电子显微镜。下列说法中正确的是 A.电子显微镜所利用电子物质波的波长可以比可见

12、光短,因此不容易发生明显衍射 B.电子显微镜所利用电子物质波的波长可以比可见光长,因此不容易发生明显衍射 C.电子显微镜所利用电子物质波的波长可以比可见光短,因此更容易发生明显衍射 D.电子显微镜所利用电子物质波的波长可以比可见光长,因此更容易发生明显衍射解:为了观察纳米级的微小结构,用光学显微镜是不可能的。因为可见光的波长数量级是10-7m,远大于纳米,会发生明显的衍射现象,因此不能精确聚焦。如果用很高的电压使电子加速,使它具有很大的动量,其物质波的波长就会很短,衍射的影响就小多了。因此本题应选A。六.氢原子中的电子云对于宏观质点,只要知道它在某一时刻的位置和速度以及受力情况,就可以应用牛顿

13、定律确定该质点运动的轨道,算出它在以后任意时刻的位置和速度。对电子等微观粒子,牛顿定律已不再适用,因此不能用确定的坐标描述它们在原子中的位置。玻尔理论中说的“电子轨道”实际上也是没有意义的。更加彻底的量子理论认为,我们只能知道电子在原子核附近各点出现的概率的大小。在不同的能量状态下,电子在各个位置出现的概率是不同的。如果用疏密不同的点子表示电子在各个位置出现的概率,画出图来,就像一片云雾一样,可以形象地称之为电子云。七、能级初中介绍了卢瑟福提出的原子的核式结构模型。认为电子绕核做圆周运动,好比地球绕太阳做圆周运动。研究表明,卢瑟福的核式结构模型和经典电磁理论有矛盾:按照经典电磁理论:电子绕核做

14、圆周运动会向外辐射同频率的电磁波,能量将减小,原子将会不稳定;电子旋转半径减小的同时,频率将增大,因此辐射的电磁波频率也应该是连续变化的。事实上原子是稳定的,原子辐射的电磁波的频率也是不变的。1.玻尔理论为解决这个矛盾,玻尔将量子理论引入原子结构理论,大胆提出了三条假设,创建了玻尔原子模型。能量定态假设:原子只能处于一系列的不连续的能量状态中,在这些状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量,这些状态叫定态。原子跃迁假设:原子从一定态跃迁到另一种定态,它要辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差值决定:即:h=Em-En 氢原子的能级图n E/eV 01 -1

15、3.62 -3.43 -1.514 -0.853轨道量子化假设:原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应,原子的定态是不连续的,因此电子所处的可能轨道的分布也是不连续的。对氢原子:轨道量子化 , r1=0.5310-10m n叫量子数能量量子化 , E1=-13.6eV,这些能量值叫能级。能量最低的状态(量子数n=1)叫基态,其他状态叫激发态。根据玻尔理论画出了氢原子的能级图。2.光子的发射和接收原子处于基态时最稳定。处于激发态时会自发地向较低能级跃迁,经过一次或几次跃迁到达基态。跃迁时以光子的形式放出能量。所放出光子的频率满足:h=Em-En原子吸收了光子后从低能级跃迁到高能级

16、,或者被电离。处于基态或较低激发态的原子只能吸收两种光子:一种是能量满足h=Em-En的光子,一种是能量大于该能级电离能的光子。321321【例6】用光子能量为E的单色光照射容器中处于基态的氢原子。停止照射后,发现该容器内的氢能释放出三种不同频率的光子,它们的频率由低到高依次为1、2、3,由此可知,开始用来照射容器的单色光的光子能量可以表示为:h1;h3;h(1+2);h(1+2+3) 以上表示式中 A.只有正确 B.只有正确 C.只有正确 D.只有正确 解:该容器内的氢能够释放出三种不同频率的光子,说明这时氢原子处于第三能级。根据玻尔理论应该有h3=E3- E1,h1=E3- E2,h2=E

17、2- E1,可见h3= h1+ h2= h(1+2),所以照射光子能量可以表示为或,答案选C。3214【例7】现有1200个氢原子被激发到量子数为4的能级上,若这些受激氢原子最后都回到基态,则在此过程中发出的光子总数是多少?假定处在量子数为n的激发态的氢原子跃迁到各较低能级的原子数都是处在该激发态能级上的原子总数的。 A.1200 B.2000 C.2200 D.24 00解:画出示意图,分步计算,不难得出结论400个,400个,400个,200个,200个,200个,400个,共2200个。3.原子光谱在人们了解原子结构以前,就发现了气体光谱。和白光形成的连续光谱不同,稀薄气体通电后发出的光

18、得到的光谱是不连续的几条亮线,叫做线状谱。因为各种原子的能级是不同的,它们的线状谱也就不会完全相同。因此把这些线状谱叫做原子光谱。利用原子光谱可以鉴别物质,分析物体的化学组成。玻尔理论能够很好地解释氢的原子光谱。根据h=Em-En计算出的频率跟实验中观察到的线状谱对应的频率恰好相同。4.玻尔理论的局限性玻尔理论成功地解释了氢光谱的规律,它的成功是因为引进了量子理论(轨道量子化、能量量子化)。但用它解释其它元素的光谱就遇到了困难,它的局限性是由于它保留了过多的经典物理理论(牛顿第二定律、向心力、库仑力等)。5.量子力学为了解决这种困难,需要建立更加彻底的量子理论,这就是量子力学。在量子力学种所谓

19、电子绕核运行的轨道,实际上只是电子出现概率密度较大的位置。如果用疏密不同的点表示电子在各个位置出现的概率,画出的图形叫做电子云。规律方法 1.正确理解光电效应规律VAKS【例8】如图,当电键S断开时,用光子能量为2.5eV的一束光照射阴极K,发现电流表读数不为零。合上电键,调节滑线变阻器,发现当电压表读数小于0.60V时,电流表读数仍不为零;当电压表读数大于或等于0.60V时,电流表读数为零。由此可知阴极材料的逸出功为A.1.9eV B.0.6eV C.2.5eV D.3.1eV 解:电流表读数刚好为零说明刚好没有光电子能够到达阳极,根据动能定理,光电子的最大初动能刚好为0.6eV。由Ek=

20、h-W可知W=1.9 eV。选A。【例9】如图所示为伦琴射线管的示意图, K为阴极钨丝,发射的电子初速度为零,A为对阴极(阳极),当AK之间加直流电压U=30KV时,电子初加速打在对阴极为上,使之发出伦琴射线,设电子的动能全部转化为伦琴射线的能量。试求:(1)电子到达对阴极的速度是多大?(2)由对阴极发出的伦琴射线的最短波长是多大?(3)若AK间的电流为10 mA那么每秒钟从对阴极归多能辐射出多少个伦琴射线光子(电子电量e=1.61019C,质量m=0.911030kg)【解析】(1)qU=EkmV2 ,V=1.0l08(m/s) (2)qU=mV2=h;=hC/qU=4.11011(m) (

21、3)I=q/t=ne/t,n=It/e=6.251016(个)2应用光子说解决实际问题【例10】 已知由激光器发出的一细束功率为P=0.15kW的激光束,竖直向上照射在一个固态铝球的下部,使其恰好能在空中悬浮。已知铝的密度为=2.7103kg/m3,设激光束的光子全部被铝球吸收,求铝球的直径是多大?(计算中可取=3,g=10m/s2)16解:设每个激光光子的能量为E,动量为p,时间t内射到铝球上的光子数为n,激光束对铝球的作用力为F,铝球的直径为d,则有:光子能量和动量间关系是E = p c,铝球的重力和F平衡,因此F= gd3,由以上各式解得d=0.33mm。【例11】太阳光垂直射到地面上时

22、,地面上1m2接受的太阳光的功率为1.4kW,其中可见部分约占45%(1)假如认为可见光的波长约为0.55m,日地间距离R=1.51011m.普朗克恒量h=6.61034Js,估算太阳每秒辐射出的可见光子数为多少?(2)若已知地球的半径为6.4106m,估算地球接受的太阳光的总功率。解答:(1)设地面上垂直阳光的1m2面积上每秒钟接收的可见光光子数为n.则有P45%=nh.解得:n=1.751021m2设想一个以太阳为球心,以日、地距离为半径的大球面积包围着太阳,大球面接受的光子数即等于太阳辐射的全部光子数。则所求可见光光子数N=n 4R2=1.75102143.14(1.51011)2=4.

23、91044(2)地球背着阳光的半个球面没有接收太阳光。地球向阳的半个球面面积也不都与太阳光垂直。接收太阳光辐射且与阳光垂直的有效面积是以地球半径为半径的圆平面的面积。则地球接收阳光的总功率P地=Pr2=1.43.14(6.4106)2=1.81017kW.3.氢原子跃迁及光谱线的计算实际上公式hv=E初-E终只适用于光子和原子作用而使原子在各定态之间跃迁的情况,而对于光子与原子作用使原子电离或实物粒子与原子作用而使原子激发的情况(如高速电子流打击任何固体表面产生伦琴射线,就不受此条件的限制。这是因为原子一旦电离,原子结构就被破坏,因而不再遵守有关原子结构的理论。 实物粒子与原子碰撞的情况,由于

24、实物粒子的动能可全部或部分地为原子吸收, 所以只要入射粒子的动能大于或等于原子某两定态能量之差,都有可能使原子受激发而向高能级跃迁,但原子所吸收的能量仍不是任意的,一定等于原子发生跃迁的两个能级间的能量差。(1)从高能级向低能级跃迁时放出光子;从低能级向高能级跃迁时可能是吸收光子,也可能是由于碰撞。(2)原子从低能级向高能级跃迁时只能吸收一定频率的光子;而从某一能级到被电离可以吸收能量大于或等于电离能的任何频率的光子。(如在基态,可以吸收E 13.6eV的任何光子,所吸收的能量除用于电离外,都转化为电子的动能)。【例12】氢原子辐射出一个光子后,根据玻尔理论下述说法中正确的是( ) A电子绕核

25、旋转的半径增大 B、氢原子的能级增大C氢原子的电势能增大 D、氢原子的核外电子的速率增大解析:氢原子辐射出一个光子是由于绕核运转的电子由外层轨道向内层轨道跃迁产生的,即由高能级向低能级跃迁产生的。因此选项A、B、C都是错误的。 电子和氢原子核之间的库仑力是电子绕核转动的向心力,即 所以ve 由于k、e、m都为定值,所以r减小时,v增大 答案:D【例13】如图给出氢原子最低的4个能级,在这些能级间跃迁所辐射的光子的频率最多有P种,其中最小频率为fmin,则( )A P 5 BP=6 Cfmin161014Hz。 Dfmin151015 Hz解析:由图可知,氢原子在能缓间跃迁最多有6种可能情况:4

26、3;32;21;42;3l;41所以是多能辐射6种频率的光子 由 hE高E低可知,能级间能量差值越小辐射的光子频率越小,所以从第4能级向第3能级跃迁辐射的光子频率最小 (E4E3)h 161014 Hz 答案:BC4.氢原子跃迁的能量规律核外电子绕核旋转可看作是以原子核为中心的匀速圆周运动,其向心力由核的库仑引力提供,氢原子的能级图n E/eV 01 -13.62 -3.43 -1.514 -0.85E1E2E3动 能:Ekn=Ek1 由于(对氢原子) Ek1=13.6 eV电势能:EPn=EP1EP1=E1Ek1=13.613.6=27.2 eV总能量:En=Ekn+EPnE1=-13.6

27、eV(Ep=Ek,,Ep=2Ek)电子从无穷远移近原子核,电场力做正功,电势能减少为负值;当原子吸收光子,从较低能级(E1)跃迁到较高能级(E2)时,即n增大时,原子的总能量(E)增加,电子的电势能(EP)增加,而动能(Ek)减少,且Ek1+EP1+hv=Ek2+EP2当原子放出光子从较高能级(E2)跃迁到较低能级(E1)时,原子的总能减少, 电子的电势能减少,而动能增加,且Ek1+EP1-hv=Ek2+EP2右上图中三个光子的能量关系为 E1 = E2 + E3;频率关系为1=2+3;而波长关系为。【例14】氢原子的基态能量为E1,图中的四个能级图中,正确代表氢原子能级的是( ) 解析由氢原

28、子能级公式En= E1n2可知只有 C图是正确的【例15】原子从一个能级跃迁到一个较低的能级时,有可能不发射光子,例如在某种条件下,铬原子从n=2能级上的电子跃迁到n=1能级上时并不发射光子,而是将相应的能量转交给n=4能级上的电子,使之能脱离原子,这一现象叫做俄歇效应,以这种方式脱离原子的电子叫俄歇电子.已知铬原子的能级公式可简化为E有=-,式中n=1,2,3表示不同的能级,A是正的已知常数.上述俄歇电子的动能是A.A B.A C. D.【解析】 铬原子n=2的能级E2=A/22=A/4,n=1的能级E1=-A,所以电子从n=2能级跃迁到n=1的能级释放的能量E=E2-E1=3A/4.又铬原子n=4的能级E4=A/42=A/16,说明电子从n=4能级跃迁到无穷远能级(E=0),即脱离原子需吸收A/16的能量,由能的转化和守恒知,该俄歇电子的能量应为Ek=E-(-E4)=11A/16,即答案C正确.高考资源网()来源:高考资源网版权所有:高考资源网(www.k s 5 )版权所有:高考资源网()版权所有:高考资源网()

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3