1、课时知能训练一、选择题1数列an中,an1,已知该数列既是等差数列又是等比数列,则该数列的前20项的和等于()A100B0或100C100或100 D0或1002数列an的通项公式an(nN*),若前n项和为Sn,则Sn为()A.1B.1C.(1)D.(1)3(2012惠州模拟)已知Sn为等差数列an的前n项和,若a12010,6,则S2011()A2011B2010C0D24已知数列an:,那么数列bn的前n项和Sn为()A. B.C. D.5设数列xn满足logaxn11logaxn(nN*,a0且a1),且x1x2x3x100100,则x101x102x103x200的值为()A100a
2、2 B101a2 C100a100 D101a100二、填空题6数列3,33,333,的前n项和Sn_.7数列an的前n项和为Sn,a11,a22,an2an1(1)n(nN*),则S100_.8已知an是公差为2的等差数列,a112,则|a1|a2|a3|a20|_.三、解答题9(2012韶关模拟)已知数列an是各项均不为0的等差数列,Sn为其前n项和,且满足aS2n1,nN*.(1)求数列an的通项公式;(2)数列bn满足bn,求数列bn的前n项和Tn.10设函数yf(x)的定义域为R,其图象关于点(,)成中心对称,令akf()(n是常数且n2,nN*),k1,2,n1,求数列ak的前n1
3、项的和11(2012汕头模拟)已知等差数列an的前3项和为6,前8项和为4.(1)求数列an的通项公式;(2)设bn(4an)qn1(q0,nN*),求数列bn的前n项和Sn.答案及解析1【解析】由题意知an1an0,由an1得a5an0,an5,S20100.【答案】A2【解析】an(),Sn(1)(1)(1)【答案】D3【解析】设等差数列的公差为d,则Snna1d,n2010,数列是以2010为首项,以为公差的等差数列,由6得66,d2.S20112011(2010)20.【答案】C4【解析】an,bn4(),Sn4(1)()()4(1).【答案】B5【解析】logaxn11logaxn,
4、得xn1axn且a0,a1,xn0,数列xn是公比为a的等比数列,x101x102x103x200x1a100x2a100x3a100x100a100100a100.【答案】C6【解析】数列3,33,333,的通项公式an(10n1),Sn(101)(1021)(10n1)(1010210310n)n10n1.【答案】10n17【解析】由an2an1(1)n知a2k2a2k2,a2k1a2k10,a1a3a5a2n11,数列a2k是等差数列,a2k2k.S100(a1a3a5a99)(a2a4a6a100)50(246100)502 600.【答案】2 6008【解析】由题意知,an12(n1
5、)(2)2n14,令2n140,得n7,当n7时,an0;当n7时,an0.|a1|a2|a3|a20|(a1a2a7)(a8a9a20)2S7S202712(2)2012(2)224.【答案】2249【解】(1)法一设等差数列an的公差为d,首项为a1,在aS2n1中,令n1,n2,得即解得a11,d2,an2n1.法二an是等差数列,则a1a2n12an.S2n1(2n1)(2n1)an.由aS2n1,得a(2n1)an,又an0,an2n1,则a11,d2.an2n1.(2)bn(),Tn(1).10【解】yf(x)的图象关于点(,)成中心对称,所以f(x)f(1x)1.令Sn1a1a2an1则Sn1f()f()f(),又Sn1f()f()f(),两式相加,得2Sn1f()f()f()f()f()f()n1,Sn1.11【解】(1)设an的公差为d.由已知得解得a13,d1.故an3(n1)4n.(2)由(1)可得,bnnqn1,于是Sn1q02q13q2nqn1.若q1,将上式两边同乘以q,qSn1q12q2(n1)qn1nqn.两式相减得到(q1)Snnqn1q1q2qn1nqn于是,Sn.若q1,则Sn123n,所以,Sn