ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:218.50KB ,
资源ID:2710650      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-2710650-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(【创新设计】高考数学 第四篇 第7讲 解三角形应用举例限时训练 新人教A版.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

【创新设计】高考数学 第四篇 第7讲 解三角形应用举例限时训练 新人教A版.doc

1、第7讲 解三角形应用举例A级基础演练(时间:30分钟满分:55分)一、选择题(每小题5分,共20分)1(2013沧州模拟)有一长为1的斜坡,它的倾斜角为20,现高不变,将倾斜角改为10,则斜坡长为 ()A1 B2sin 10C2cos 10 Dcos 20解析如图,ABC20,AB1,ADC10,ABD160.在ABD中,由正弦定理得,ADAB2cos 10.答案C2某人向正东方向走x km后,向右转150,然后朝新方向走3 km,结果他离出发点恰好是 km,那么x的值为 ()A. B2 C.或2 D3解析如图所示,设此人从A出发,则ABx,BC3,AC,ABC30,由余弦定理得()2x232

2、2x3cos 30,整理得x23x60,解得x或2.答案C3一艘海轮从A处出发,以每小时40海里的速度沿南偏东40的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70,在B处观察灯塔,其方向是北偏东65,那么B,C两点间的距离是 ()A10海里 B10海里C20海里 D20海里解析如图所示,易知,在ABC中,AB20海里,CAB30,ACB45,根据正弦定理得,解得BC10(海里)答案A4.(2012吉林部分重点中学质量检测)如图,两座相距60 m的建筑物AB、CD的高度分别为20 m、50 m,BD为水平面,则从建筑物AB的顶端A看建筑物CD的张角为

3、()A30 B45 C60 D75解析依题意可得AD20(m),AC30(m),又CD50(m),所以在ACD中,由余弦定理得cosCAD,又0CAD180,所以CAD45,所以从顶端A看建筑物CD的张角为45.答案B二、填空题(每小题5分,共10分)5(2011上海)在相距2千米的A,B两点处测量目标点C,若CAB75,CBA60,则A,C两点之间的距离为_千米解析由已知条件CAB75,CBA60,得ACB45.结合正弦定理得,即,解得AC(千米)答案6.(2013潍坊模拟)如图,一艘船上午9:30在A处测得灯塔S在它的北偏东30处,之后它继续沿正北方向匀速航行,上午10:00到达B处,此时

4、又测得灯塔S在它的北偏东75处,且与它相距8 n mile.此船的航速是_ n mile/h.解析设航速为v n mile/h,在ABS中,ABv,BS8 n mile,BSA45,由正弦定理得:,v32 n mile/h.答案32三、解答题(共25分)7(12分)某广场有一块不规则的绿地如图所示,城建部门欲在该地上建造一个底座为三角形的环保标志,小李、小王设计的底座形状分别为ABC、ABD,经测量ADBD7米,BC5米,AC8米,CD.求AB的长度解在ABC中,由余弦定理得cos C,在ABD中,由余弦定理得cos D.由CD,得cosCcosD,解得AB7,所以AB长度为7米8(13分)如

5、图所示,位于A处的信息中心获悉:在其正东方向相距40海里的B处有一艘渔船遇险,在原地等待营救信息中心立即把消息告知在其南偏西30、相距20海里的C处的乙船,现乙船朝北偏东的方向沿直线CB前往B处救援,求cos 的值解如题图所示,在ABC中,AB40海里,AC20海里,BAC120,由余弦定理知,BC2AB2AC22ABACcos 1202 800,故BC20(海里)由正弦定理得,所以sinACBsinBAC.由BAC120,知ACB为锐角,则cosACB.易知ACB30,故cos cos(ACB30)cosACBcos 30sinACBsin 30.B级能力突破(时间:30分钟满分:45分)一

6、、选择题(每小题5分,共10分)1一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A测得水柱顶端的仰角为45,沿点A向北偏东30前进100 m到达点B,在B点测得水柱顶端的仰角为30,则水柱的高度是 ()A50 m B100 m C120 m D150 m解析设水柱高度是h m,水柱底端为C,则在ABC中,A60,ACh,AB100,BCh,根据余弦定理得,(h)2h210022h100cos 60,即h250h5 0000,即(h50)(h100)0,即h50,故水柱的高度是50 m.答案A2.(2013榆林模拟)如图,在湖面上高为10 m处测得

7、天空中一朵云的仰角为30,测得湖中之影的俯角为45,则云距湖面的高度为(精确到0.1 m) ()A2.7 m B17.3 mC37.3 m D373 m解析在ACE中,tan 30.AE(m)在AED中,tan 45,AE(m),CM10(2)37.3(m)答案C二、填空题(每小题5分,共10分)3.在2012年7月12日伦敦奥运会上举行升旗仪式如图,在坡度为15的观礼台上,某一列座位所在直线AB与旗杆所在直线MN共面,在该列的第一个座位A和最后一个座位B测得旗杆顶端N的仰角分别为60和30,且座位A,B的距离为10米,则旗杆的高度为_米解析由题可知BAN105,BNA30,由正弦定理得,解得

8、AN20(米),在RtAMN中,MN20 sin 6030(米)故旗杆的高度为30米答案304.(2013合肥一检)如图,一船在海上自西向东航行,在A处测得某岛M的方位角为北偏东角,前进m海里后在B处测得该岛的方位角为北偏东角,已知该岛周围n海里范围内(包括边界)有暗礁,现该船继续东行,当与满足条件_时,该船没有触礁危险解析由题可知,在ABM中,根据正弦定理得,解得BM,要使该船没有触礁危险需满足BMsin(90)n,所以当与的关系满足mcos cos nsin()时,该船没有触礁危险答案mcos cos nsin()三、解答题(共25分)5(12分)(2012肇庆二模)如图,某测量人员为了测

9、量西江北岸不能到达的两点A,B之间的距离,她在西江南岸找到一个点C,从C点可以观察到点A,B;找到一个点D,从D点可以观察到点A,C;找到一个点E,从E点可以观察到点B,C;并测量得到数据:ACD90,ADC60,ACB15,BCE105,CEB45,DCCE1百米(1)求CDE的面积;(2)求A,B之间的距离解(1)在CDE中,DCE3609015105150,SCDEDCCEsin 150sin 30(平方百米)(2)连接AB,依题意知,在RtACD中,ACDCtanADC1tan 60(百米),在BCE中,CBE180BCECEB1801054530,由正弦定理,得BCsinCEBsin

10、 45(百米)cos 15cos(6045)cos 60cos 45sin 60sin 45,在ABC中,由余弦定理AB2AC2BC22ACBCcosACB,可得AB2()2()222,AB百米6(13分)某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上在小艇出发时,轮船位于港口O北偏西30且与该港口相距20海里的A处,并正以30海里/时的航行速度沿正东方向匀速行驶假设该小艇沿直线方向以v海里/时的航行速度匀速行驶,经过t小时与轮船相遇(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/时,试设计航行方案(即确定航行方向和航行

11、速度的大小),使得小艇能以最短时间与轮船相遇解(1)设相遇时小艇航行的距离为S海里,则S .故当t时,Smin10(海里),此时v30(海里/时)即小艇以30海里/时的速度航行,相遇时小艇的航行距离最小(2)设小艇与轮船在B处相遇,则v2t2400900t222030tcos(9030),故v2900,0v30,900900,即0,解得t.又t时,v30海里/时故v30海里/时时,t取得最小值,且最小值等于.此时,在OAB中,有OAOBAB20海里,故可设计航行方案如下:航行方向为北偏东30,航行速度为30海里/时,小艇能以最短时间与轮船相遇.特别提醒:教师配赠习题、课件、视频、图片、文档等各种电子资源见创新设计高考总复习光盘中内容.6

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3