ImageVerifierCode 换一换
格式:DOCX , 页数:18 ,大小:301KB ,
资源ID:2683896      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-2683896-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(考点解析人教版八年级数学上册第十五章分式章节练习试题(含详解).docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

考点解析人教版八年级数学上册第十五章分式章节练习试题(含详解).docx

1、人教版八年级数学上册第十五章分式章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知,用a表示c的代数式为()ABCD2、分式方程的解是()A0B2C0或2D无解3、若关于的分式方程有增根,则的值

2、为()A2B3C4D54、关于x的方程2+有增根,则k的值为()A3B3C3D25、若,则的大小关系为()ABCD6、若关于x的方程有增根,则m的值为()A2B1C0D7、学完分式运算后,老师出了一道题“计算:”.小明的做法:原式;小亮的做法:原式;小芳的做法:原式其中正确的是()A小明B小亮C小芳D没有正确的8、如果关于x的分式方程的解为整数,且关于y的不等式组有解,则符合条件的所有整数a的和为()A1B0C1D49、如果,那么代数式的值是()ABC1D310、化简(a1)(1)a的结果是()Aa2B1Ca2D1第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、方程的解

3、为_2、已知m+n=-3.则分式的值是_3、若关于x的分式方程有正整数解,则整数m为 _4、不改变分式的值,把的分子与分母中各项系数都化为整数为_5、若分式的值为负数,则x的取值范围是_三、解答题(5小题,每小题10分,共计50分)1、已知关于x的方程有增根,求m的值2、化简,并求值其中a与2、3构成的三边,且a为整数3、计算:(1)(2)4、解分式方程:5、解分式方程(1)(2)-参考答案-一、单选题1、D【解析】【分析】将代入消去b,进行化简即可得到结果【详解】解:把代入,得,故选D【考点】本题考查了分式的混合运算,列代数式熟练掌握运算法则是解题的关键2、D【解析】【分析】分式方程去分母转

4、化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【详解】去分母得,解得,经检验是增根,则分式方程无解故选:D【考点】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验3、D【解析】【分析】根据分式方程有增根可求出,方程去分母后将代入求解即可.【详解】解:分式方程有增根,去分母,得,将代入,得,解得故选:D【考点】本题考查了分式方程的无解问题,掌握分式方程中增根的定义及增根产生的原因是解题的关键4、D【解析】【分析】根据增根的定义可求出x的值,把方程去分母后,再把求得的x的值代入计算即可.【详解】解:原方程有增根,最简公分母x30,解得x3,方程两边都乘(x3),得

5、:x12(x3)+k,当x3时,k2,符合题意,故选D【考点】本题考查的是分式方程的增根,在分式方程变形的过程中,产生的不适合原方程的根叫做分式方程的增根.增根使最简公分母等于0,不适合原分式方程,但是适合去分母后的整式方程5、B【解析】【分析】可以采用取特殊值法,逐一求解,然后进行判断即可【详解】令,故选B【考点】本题考查了实数的大小比较,负整数指数幂,整数指数幂,解决此类题可以选用取特殊值法进行求解6、B【解析】【分析】先通过去分母把分式方程化为整式方程,再把增根代入整式方程,求出参数m,即可【详解】解:把原方程去分母得:,原分式方程有增根:x=1,即:m=1,故选B【考点】本题主要考查分

6、式方程增根的意义,理解使分式方程的分母为零的根,是分式方程的增根,是解题的关键7、C【解析】【详解】=1所以正确的应是小芳故选C8、A【解析】【分析】先解分式方程,根据分式方程有整数解求解的值,再根据一元一次不等式组有解,求解的取值范围,从而可得答案.【详解】解: 关于x的分式方程的解为整数, 则 或 解得:或或或 又 则 即 所以或或由得: 由得: 关于y的不等式组有解, 综上:或 符合条件的所有整数a的和为 故选A【考点】本题考查的是分式方程的整数解,根据一元一次不等式组有解求解参数的取值范围,掌握“解分式方程及分式方程的整数解的含义,一元一次不等式组有解的含义”是解本题的关键.9、C【解

7、析】【分析】先将等式变形可得,然后根据分式各个运算法则化简,最后利用整体代入法求值即可【详解】解:=1故选C【考点】此题考查的是分式的化简求值题,掌握分式的运算法则是解决此题的关键10、A【解析】【分析】根据分式的混合运算顺序和运算法则计算可得【详解】原式=(a1)a=(a1)a=a2,故选A【考点】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则二、填空题1、【解析】【分析】先去分母,然后移项合并,最后进行检验即可【详解】解:去分母得:移项合并得:检验,将代入,所以是原分式方程的解故答案为:【考点】本题考查了解分式方程解题的关键在于正确的去分母2、,【解析】【分析】先

8、计算括号内的,再将除法转化为乘法,最后将m+n=-3代入即可.【详解】解:原式=,m+n=-3,代入,原式=.【考点】本题考查了分式的化简求值,解题的关键是掌握分式的运算法则.3、0【解析】【分析】先解分式方程,再根据有正整数解及分母不为0进行求解即可【详解】方程两边同乘,得解得分式方程有正整数解即即故答案为:0【考点】本题考查解分式方程及分式方程正整数根的情况,注意分母不等于0是解题的关键4、【解析】【分析】根据分式的基本性质进行计算即可;【详解】故答案为:【考点】本题主要考查了分式的基本性质,准确计算是解题的关键5、【解析】【分析】根据分式值为负的条件列出不等式求解即可【详解】解:0x-2

9、0,即故填:【考点】本题主要考查了分式值为负的条件,根据分式小于零的条件列出不等式成为解答本题的关键三、解答题1、m3或5时【解析】【分析】根是分式方程化为整式方程后产生的使分式方程的分母为0的根有增根,那么最简公分母x(x1)0,所以增根是x0或1,把增根代入化为整式方程的方程即可求出m的值【详解】解:方程两边都乘x(x1),得3(x1)6xxm,原方程有增根,最简公分母x(x1)0,解得x0或1,当x0时,m3;当x1时,m5.故当m3或5时,原方程有增根【考点】本题考查的是分式方程,熟练掌握分式方程是解题的关键.2、,原式【解析】【分析】根据分式的运算性质进行花间,再根据三角西三边关系和

10、分式有意义的条件求解即可;【详解】原式,a与2、3构成的三边,且a为整数,即,当或时,原式没有意义,取,原式【考点】本题主要考查了分式的化简和分式有意义的条件和三角形三边关系,准确分析计算是解题的关键3、(1);(2)【解析】【分析】(1)原式先化简绝对值、二次根式以及立方根,然后再进行外挂;(2)原式先计算括号内的,再把除法转化为乘法,再进行约分即可【详解】解:(1)=;(2) =【考点】本题主要考查了实数的混合运算以及分式的加减乘除混合运算,掌握运算法则是解答本题的关键4、【解析】【分析】两边同乘分式方程的最简公分母,将分式方程转化为整式方程,再解整式方程,然后检验即可【详解】解:两边同乘

11、,得:3x+x+24,解得:,检验,当时,是原方程的解【考点】本题考查了解分式方程,找到最简公分母将分式方程转化为整式方程是解题的关键5、(1)x=-2;(2)无解【解析】【分析】(1)观察可得最简公分母是2(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解(2)观察可得最简公分母是(x+2)(x-2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解【详解】解:经检验时,是原分式方程的解; 经检验时,不是原分式方程的解;原分式方程无解;【考点】本题考查了分式方程的解法,注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解(2)解分式方程一定注意要验根

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3