1、课时质量评价(十八)(建议用时:45分钟)A组全考点巩固练1对x0,),ex与1x的大小关系为()Aex1x Bex1xCex1x D不确定A解析:令f (x)ex(1x)因为f (x)ex1,所以对x0,),f (x)0,故f (x)在0,)上单调递增,故f (x)f (0)0,即ex1x.故选A2若0x1x2ln x2ln x1 Beex1e Dx2ex1eC解析:令f (x),则f (x).当0x1时,f (x)0,即f (x)在(0,1)上单调递减因为0x1x21,所以f (x2)f (x1),即x1e.故选C3. 若e是自然对数的底数,则()ABCDA解析:令f (x),则f (x)
2、.当0x0,f (x)单调递增;当xe时,f (x)f (4)得.故选A4已知x1是函数f (x)ax3bxln x(a0,bR)的一个极值点,则ln a与b1的大小关系是()Aln ab1Bln a0),则g(a)3.令g(a)0,解得0a;令g(a).故g(a)在上单调递增,在上单调递减故g(a)maxg1ln 30,故ln a2.证明:设f (x)exln x(x0),则f (x)ex.令h(x)f (x),则h(x)ex0,所以f (x)在(0,)上单调递增又f 20,所以在上存在x0使f (x0)0,即x0ln x0.所以在(0,x0)上,f (x)单调递减,在(x0,)上单调递增,
3、所以f (x)在xx0处有极小值,也是最小值所以f (x0)eln x0x02,故f (x)2,即exln x2.6证明:当x0,1时,xsin xx.证明:令F(x)sin xx,则F(x)cos x.当x时,F(x)0,F(x)在上单调递增;当x时,F(x)0,所以当x0,1时,F(x)0,即sin xx.记H(x)sin xx,则当x(0,1)时,H(x)cos x10时,f (x)0时,f (x)0,即2a恒成立令g(x)(x0),则g(x),易知g(x)在(0,1)上单调递增,在(1,)上单调递减,则g(x)maxg(1)1,所以2a1,即a.故实数a的取值范围是.(2)证明:若ae
4、,要证f (x)xex,只需证exln xex,即证exex0),则h(x).易知h(x)在上单调递减,在上单调递增,则h(x)minh0,所以ln x0.令(x)exex,则(x)eex,易知(x)在(0,1)上单调递增,在(1,)上单调递减,则(x)max(1)0,所以exex0.因为h(x)与(x)不同时为0,所以exex1时f (x)0,b0,则g(x)在(0,)上单调递增当a0,b0时,令g(x)0,得x.令g(x)0,得0x.所以g(x)在上单调递减,在上单调递增当a0时,g(x)0,则g(x)在(0,)上单调递减当a0,b0,得0x.令g(x).所以g(x)在上单调递增,在上单调
5、递减(2)证明:设函数h(x)f (x)(3x1),则h(x)cos x3.因为x0,所以(0,2,cos x1,1,则h(x)0在0,)上恒成立,且h(x)在0,)的任意子区间内都不恒等于0,所以h(x)在0,)上单调递减所以h(x)f (x)(3x1)h(0)0,即f (x)3x1.(3)证明:当ab1时,g(x)x1ln x(x0)由(1)知,g(x)ming(1)0,所以g(x)x1ln x0,即x1ln x在(0,)上恒成立当x1时,(x1)20,(x1)2esin x0,则(x1)2esin x1ln(x1)2esin x,即(x1)2esin x2ln(x1)sin x1f (x
6、)又(x22x2)esin x(x1)2esin x,所以(x22x2)esin xf (x),即f (x)0,所以ae.两边取自然对数,所以ln ax01ln x0.因此f (x)minf (x0)aeln x0ln aln ax01ln a2ln a122ln a11,所以f (x)1,所以f (x)1恒成立当0a1时, f (1)aln aa1,所以f (1)1,所以f (x)1不恒成立综上所述,实数a的取值范围是1,)11(2020青岛一模)已知函数f (x)axln xx22的图象在点(1,1)处的切线方程为y1.(1)当x(0,2)时,证明:0f (x)2;(2)设函数g(x)xf
7、 (x),当x(0,1)时,证明:0g(x)1;(3)若数列an满足an1f (an),0a11,nN*.证明ln ai0,h(x)在区间(0,1)上单调递增;当x(1,2)时,h(x)f (2)4ln 22ln 16ln e20.又因为h(x)ln x1x0,所以ln xx1,所以f (x)2xln xx222x(x1)x22x22x2(x1)212.综上,当x(0,2)时,0f (x)f (1)1.因为当x(0,1)时,x22x2(2,1),所以g(x)0,g(x)在区间(0,1)上单调递增,所以g(x)1,所以g(x)xf (x)0.综上,0g(x)1.(3)由(1)(2)知,当x(0,1)时,1f (1)f (x)2;当x(1,2)时,0f (2)f (x)f (1)1.因为a1(0,1),所以a2f (a1)(1,2),a3f (a2)(0,1),a4f (a3)(1,2),所以a2k1(0,1),a2k(1,2),kN*.当n2k时,a1a2a3an(a1a2)(a3a4)(a2k1a2k)g(a1)g(a3)g(a2k1)1;当n2k1时,a1a2a3an(a1a2)(a3a4)(a2k3a2k2)a2k1g(a1)g(a3)g(a2k3)a2k11所以a1a2a3an1,从而ln ailn (a1a2an)0.
Copyright@ 2020-2024 m.ketangku.com网站版权所有