1、专练32数列求和命题范围:数列求和常用的方法基础强化一、选择题1若数列an的通项公式为an2n2n1,则数列an的前n项和为()A2nn21B2n1n21C2n1n22D2nn22等差数列an的公差为2,若a2,a4,a8成等比数列,则an的前n项和Sn()An(n1) Bn(n1)CD3数列1,的前n项和为()ABCD4数列的前2018项的和为()A1B1C1D15已知数列an满足an1(1)n1an2,则其前100项和为()A.250B200C150D1006已知数列an满足:an1anan1(n2,nN*),a11,a22,Sn为数列an的前n项和,则S2018()A3B2C1D0720
2、22陕西省西安中学三模数列an,bn满足anbn1,ann25n6,nN*,则bn的前10项之和为()ABCD8已知数列an中,a1a21,an2则数列an的前20项和为()A1121B1122C1123D112492022江苏模拟已知等差数列an的前9项和为18,函数f(x)(x2)31,则f(a1)f(a2)f(a9)()A7B8C9D10二、填空题10设Sn为等差数列an的前n项和,已知a1a3a116,则S9_11设数列an满足a11,且an1ann1(nN*),则数列的前10项的和为_12在等差数列an中,已知a1a30,a2a42,则数列的前10项和是_.能力提升13已知数列an满
3、足2anan1an1(n2,nN),且a11,a59,bnCan,则数列bn的前100项的和为()A100299B1002100C50299D502101142022安徽省示范高中联考已知数列an为等比数列,公比q1,a13,3a1,2a2,a3成等差数列,将数列an中的项按一定顺序排列成a1,a1,a2,a1,a2,a3,a1,a2,a3,a4,的形式,记此数列为bn,数列bn的前n项和为Sn,则S24的值是()A1629B1641C1668D1749152022安徽省滁州市质检已知数列an满足:a11,a24,4an13anan20,设bn,nN*.则b1b2b2022_162022江西省
4、赣州市一模数列an满足anan1n2sin(nN*),若数列an前n项和为Sn,则S40_专练32数列求和1CSn(2222n)(1352n1)2n12n2.2Aa2,a4,a8成等比数列,aa2a8,(a13d)2(a1d)(a17d),得a1d2,Snna1dn(n1).3B2(),Sn2(1)2(1).4D,S201811.5D当n2k1时,a2ka2k12,an的前100项和S100(a1a2)(a3a4)(a99a100)502100,故选D.6Aan1anan1,a11,a22,a31,a41,a52,a61,a71,a82,故数列an是周期为6的周期数列,且每连续6项的和为0,故
5、S20183360a2017a2018a1a23.故选A.7D因为anbn1,ann25n6,故bn,故bn的前10项之和为.8C由题意可知,数列a2n是首项为1,公比为2的等比数列,数列a2n1是首项为1,公差为2的等差数列,故数列an的前20项和为10121123.选C.9C由题意知,S918,所以a1a94,a1a9a2a8a3a7a4a62a54,a52,又f(x)(x2)31,则f(x)f(4x)(x2)31(4x2)312,所以f(a1)f(a2)f(a9)f(a1)f(a9)f(a2)f(a8)f(a3)f(a7)f(a4)f(a6)f(a5)4219.1018解析:设等差数列a
6、n的公差为d.a1a3a116,3a112d6,即a14d2,a52,S918.11.解析:an1ann1,当n2时,a2a12,a3a23,a4a34,anan1n,ana1,an1(n2)又当n1时a11符合上式,an2(),S102(1)2(1).12.解析:an为等差数列,a1a32a20,a20,a2a42a32,a31,da3a21,ana2(n2)d2n,Sn,Sn,Sn(),Sn,S10.13A由2anan1an1知an为等差数列,又a11,a5a14d,d2,an1(n1)22n1,bn的前100项的和S100满足:S100Ca1Ca2Ca100,S100Ca100Ca99C
7、a1Ca100Ca99Ca1,2S100(a1a100)(CCCC)200299,S100100299.14C因为数列an为等比数列,公比q1,a13,3a1,2a2,a3成等差数列,所以4a23a1a3,即4q3q2,解得q1或q3,因为q1,所以q3.所以ana1qn13n,其前n项和为Tn,所以S24T1T2T6T3()()()()(323337)7163871668.15.解析:依题意a11,a24,4an13anan20,an2an13(an1an),所以数列an1an是首项a2a13,公比为3的等比数列,所以an1an3n,ana1(a2a1)(a3a2)(anan1)13323n1,a11也满足,所以an,bn,所以b1b2b202211.16800解析:由已知可得anan1n2sinS40(a1a2)(a3a4)(a5a6)(a39a40)12sin32sin52sin392sin123252392(13)(13)(57)(57)(3739)(3739)2(13573739)220800.
Copyright@ 2020-2024 m.ketangku.com网站版权所有