收藏 分享(赏)

上海市格致中学2012届高三数学第三轮复习题型整理分析:第4部分 复数.doc

上传人:高**** 文档编号:26652 上传时间:2024-05-23 格式:DOC 页数:2 大小:125KB
下载 相关 举报
上海市格致中学2012届高三数学第三轮复习题型整理分析:第4部分 复数.doc_第1页
第1页 / 共2页
上海市格致中学2012届高三数学第三轮复习题型整理分析:第4部分 复数.doc_第2页
第2页 / 共2页
亲,该文档总共2页,全部预览完了,如果喜欢就下载吧!
资源描述

第四部分复数31、复数问题实数化时,设复数,不要忘记条件.两复数,的条件是.这是复数求值的主要依据.根据条件,求复数的值经常作实数化处理.举例若复数满足:,则.分析:设,原式化为,得,求得.32、实系数一元二次方程若存在虚根,则此两虚根互为共轭.若虚系数一元二次方程存在实根不能用判别式判断.举例若方程的两根满足,求实数的值.分析:在复数范围内不一定成立,但一定成立.对于二次方程,韦达定理在复数范围内是成立的.,则或,所以或.33、的几何意义是复平面上对应点之间的距离,的几何意义是复平面上以对应点为圆心,为半径的圆.举例若表示的动点的轨迹是椭圆,则的取值范围是.分析:首先要理解数学符号的意义:表示复数对应的动点到复数与对应的两定点之间的距离之和等于4.而根据椭圆的定义知,两定点之间的距离要小于定值4,所以有,而此式又表示对应的点在以对应点为圆心,4为半径的圆内,由模的几何意义知.34、对于复数,有下列常见性质:(1)为实数的充要条件是;(2)为纯虚数的充要条件是且;(3);(4).举例设复数满足:(1)(2),求复数.分析:由则或.当时,则,由得或(舍去);当时,可求得.综上知:.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3