ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:312.50KB ,
资源ID:265444      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-265444-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(新疆兵团农二师华山中学数学(人教版)学案 必修五:2.1数列的概念与简单表示法(2).doc)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

新疆兵团农二师华山中学数学(人教版)学案 必修五:2.1数列的概念与简单表示法(2).doc

1、2.1数列的概念与简单表示法(2)学习目标 1. 了解数列的递推公式,明确递推公式与通项公式的异同;2. 会由递推公式写出数列的前几项,并掌握求简单数列的通项公式的方法. 学习过程 一、课前准备(预习教材P31 P34 ,找出疑惑之处)复习1:什么是数列?什么是数列的通项公式?复习2:数列如何分类?二、新课导学 学习探究探究任务:数列的表示方法问题:观察钢管堆放示意图,寻找每层的钢管数与层数n之间有何关系?1. 通项公式法:试试:上图中每层的钢管数与层数n之间关系的一个通项公式是 . 2. 图象法:数列的图形是 ,因为横坐标为 数,所以这些点都在y轴的 侧,而点的个数取决于数列的 从图象中可以

2、直观地看到数列的项随项数由小到大变化而变化的趋势3. 递推公式法:递推公式:如果已知数列的第1项(或前几项),且任一项与它的前一项(或前n项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式. 试试:上图中相邻两层的钢管数与之间关系的一个递推公式是 . 4. 列表法:试试:上图中每层的钢管数与层数n之间关系的用列表法如何表示?反思:所有数列都能有四种表示方法吗? 典型例题例1 设数列满足写出这个数列的前五项. 变式:已知,写出前5项,并猜想通项公式. 小结:由递推公式求数列的项,只要让n依次取不同的值代入递推公式就可求出数列的项. 例2 已知数列满足, 那么( ).A. 20

3、032004 B. 20042005 C. 20072006 D. 变式:已知数列满足,求.小结:由递推公式求数列的通项公式,适当的变形与化归及归纳猜想都是常用方法. 动手试试练1. 已知数列满足,且(),求.练2.已知数列满足, (),则( ).A0 B. C. D. 练3. 在数列中,通项公式是项数n的一次函数. 求数列的通项公式; 88是否是数列中的项.三、总结提升 学习小结1. 数列的表示方法;2. 数列的递推公式. 知识拓展n刀最多能将比萨饼切成几块? 意大利一家比萨饼店的员工乔治喜欢将比萨饼切成形状各异的小块,以便出售. 他发现一刀能将饼切成两块,两刀最多能切成4块,而三刀最多能切

4、成7块(如图).请你帮他算算看,四刀最多能将饼切成多少块?n刀呢?解析:将比萨饼抽象成一个圆,每一刀的切痕看成圆的一条弦. 因为任意两条弦最多只能有一个交点,所以第n刀最多与前n1刀的切痕都各有一个不同的交点,因此第n刀的切痕最多被前n1刀分成n段,而每一段则将相应的一块饼分成两块. 也就是说n刀切下去最多能使饼增加n块. 记刀数为1时,饼的块数最多为,刀数为n时,饼的块数最多为,所以=.由此可求得=1+. 当堂检测:1. 已知数列,则数列是( ).A. 递增数列 B. 递减数列 C. 摆动数列 D. 常数列2. 数列中,则此数列最大项的值是 ( ).A. 3 B. 13 C. 13 D. 1

5、23. 数列满足,(n1),则该数列的通项 ( ). A. B. C. D. 4. 已知数列满足,(n2),则 .5. 已知数列满足,(n2),则 . 课后作业 1. 数列中,0,(2n1) (nN),写出前五项,并归纳出通项公式. 2. 数列满足,写出前5项,并猜想通项公式.夯基达标:1、下列说法不正确的是:( )A、数列a,a,a,是无穷数列 B、数列就是定义在正整数集上或它的有限子集上的函数值 C、数列0,-1,-2,-3,不一定是递减数列 D、已知数列,则也是一个数列2、在数列中,0.08是它的第( )项。A. 100 B. 12 C. 10 D. 83、函数定义如下表,数列满足,且对

6、任意,则等于( )1234551342 A.1 B.2 C.4 D.54、600是数列12,23,34,45,的第( )项A.20 B.24 C.25 D.305、数列中,对任意,都有,则_。6、数列中,且,则_7、数列的通项公式为,则是此数列的第_项。8、已知数列:5,7,9,11,其中后一项比前一项大2。 写出此数列的一个通项公式; 9+4n是否为此数列中的一项?能力提升:1、已知,则数列是( ) A.递增数列 B.递减数列 C.常数列 D.摆动数列2、已知数列的前n 项和,则_3、写出下列数列的一个通项公式: 2,4,2,4,2,4,;0.6,0.66,0.666,0.6666, ;4、数列的通项公式为, -60是否是中的一项? 当n分别取何值时,?5、在数列中,已知,写出此数列的前6项,并猜想数列的通项公式。

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1