ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:400.50KB ,
资源ID:2646      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-2646-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文((新人教A)高三数学教案全集之4 7二倍角的正弦、余弦、正切(3).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

(新人教A)高三数学教案全集之4 7二倍角的正弦、余弦、正切(3).doc

1、高考资源网() 您身边的高考专家课 题:47二倍角的正弦、余弦、正切(3)教学目的:要求学生能较熟练地运用公式进行化简、求值、证明,增强学生灵活运用数学知识和逻辑推理能力教学重点:二倍角公式的应用教学难点:灵活应用和、差、倍角公式进行三角式化简、求值、证明恒等式授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教学过程:一、复习引入:二倍角公式: ; ; ; 二、讲解新课: 1积化和差公式的推导 sin(a + b) + sin(a - b) = 2sinacosb sinacosb =sin(a + b) + sin(a - b)sin(a + b) - sin(a - b) = 2

2、cosasinb cosasinb =sin(a + b) - sin(a - b)cos(a + b) + cos(a - b) = 2cosacosb cosacosb =cos(a + b) + cos(a - b)cos(a + b) - cos(a - b) = - 2sinasinb sinasinb = -cos(a + b) - cos(a - b)2和差化积公式的推导若令a + b = q,a - b = ,则, 代入得: 3半角公式 证:1在 中,以a代2a,代a 即得: 2在 中,以a代2a,代a 即得: 3以上结果相除得:4 4万能公式证:1 2 3三、讲解范例:例1已

3、知,求3cos 2q + 4sin 2q 的值 解: cos q 0 (否则 2 = - 5 ) 解之得:tan q = 2 原式例2已知,tana =,tanb =,求2a + b 解: 又tan2a 0,tanb 0 , 2a + b = 例3已知sina - cosa = ,求和tana的值 解:sina - cosa = 化简得: 即 例4已知cosa - cos b = ,sina - sinb = ,求sin(a + b)的值解:cosa - cos b = , sina - sin b =, 例5求证:sin3asin3a + cos3acos3a = cos32a 证:左边 =

4、 (sin3asina)sin2a + (cos3acosa)cos2a = -(cos4a - cos2a)sin2a + (cos4a + cos2a)cos2a = -cos4asin2a +cos2asin2a +cos4acos2a +cos2acos2a = cos4acos2a + cos2a = cos2a(cos4a + 1) = cos2a2cos22a = cos32a = 右边原式得证四、课堂练习:1已知、为锐角,且3sin22sin21,3sin22sin20求证:2证法1:由已知得3sin2cos2 3sin22sin2 得tan、为锐角0,02,20,22,2证法

5、2:由已知可得:3sin2cos23sin22sin2cos(2)coscos2sinsin2cos3sin2sinsin23sin2cossin3sincos0又由2(0,)2证法3:由已知可得 sin(2)sincos2cossin2sin3sin2cossin23sin(sin2cos2)3sin又由,得3sincossin2 22,得9sin49sin2cos21sin,即sin(2)1又022评述:一般地,若所求角在(0,)上,则一般取此角的余弦较为简便;若所求角在(,)上,则一般取此角的正弦较为简便;当然,若已知条件与正切函数关系比较密切,也可考虑取此角的正切2在ABC中,sinA

6、是cos(BC)与cos(BC)的等差中项,试求(1)tanBtanC的值(2)证明tanB(1tanC)cot(45C)(1)解:ABC中,sinAsin(BC)2sin(BC)cos(BC)cos(BC)2sinBcosC2cosBsinC2cosBcosCcosBcosC0 tanBtanC1(2)证明:又由上:tan1tanC(1tanC)(1tanC)tan(45C)(1tanC)cot(45C)3求值: 解:原式 五、小结 通过这节课的学习,要掌握推导积化和差、和差化积公式(不要求记,半角公式和万能公式的方法,要知道它们的互化关系另外,要注意半角公式的推导与正确使用 六、课后作业:1如果cos,3,则sin的值等于( )2设56且cosa,则sin等于( )3已知tan764,则tan7的值约为( )4tancot的值等于 5已知sinAcosA1,0,则tan 6已知tan、tan是方程72810的两根,则tan 7设25sin2sin240且是第二象限角,求tan8已知cos2,求sin4cos4的值9求证参考答案:1C 2D 3A 42 52 62 7 8 9 七、板书设计(略)八、课后记: - 6 - 版权所有高考资源网

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3